

Pressure cells for soft matter at LLB, Which solutions can be used? Where are the limitations and the problems encountered?

DNEE Laboratoire Léon Brillouin

<u>Burkhard ANNIGHÖFER</u>, Patrick BARONI, Sophie COMBET-JEANCENEL Task 2: "Kinetics and Dynamics" Saclay – 28th January 2013

Laboratoire Léon-Brillouin (LLB) UMR 12 CEA/CNRS F-91191 Gif-sur-Yvette CEDEX, FRANCE

MMI3-FP7-JRA-II-WP20 "Advanced neutron tools for Soft and Bio-Materials"

Pressure cells for soft matter at LLB Type I (hollow cylinder)

The pros:

- Easy to seal
- Low acquisition costs
- The Bridgman-seal is tight up to very high pressure > 30kbar
- No size problems

The cons:

- Above 10kbar the cone-cone or radius-cone seal becomes to be tricky
- The data analysis for SANS measurements with the cylinder geometry is more complicated to do than a flat geometry

Pressure cells for soft matter at LLB Type I (hollow cylinder)

Title	Maximum	Volume in the	HP cell	Dimension	Temperature	Material	Application area	Q-range	Transmission
Drawing number	allowable	beam [cm³]	volume	D_{av} / D_{int}	range				
	pressure	Ø and H in	[cm ³]	ex int	[1/]			[Å-]]	[9/]
	נשמון	[iiiii]	[CIII]	[mm]				[A]	[/0]
High pressure	8000	1,42cm ³	2,16	Ø18 / Ø6	1-400	CuBe2	Diffraction,		
cell 8kbar for		Ø 6mm ;				AT(1F00)	inelastic and quasi-		
N [*] 1001		5011111					elastic ultrusion		
High pressure	10000	0.99cm ³	1 53	Ø20 5 / Ø5	1-400	CuBe2	Diffraction		
cell 10kbar for		Ø 5mm: 50mm	.,	220,37 23		AT(TF00)	inelastic and quasi-		
inert gases		,				(,	elastic diffusion		
N°: 2001									
Cellule HP	6500	2,51cm ³	4,45	Ø31,5 / Ø8	1-300	Aluminium	Diffraction,	TOF: 0,4-2 at 6Å	75% at 6Å
Mibemol Alu		Ø 8mm; 50mm				7049A T651	inelastic and quasi-	G6.1:	
N°: 18400			1.63				elastic diffusion	0,25-2,36 at 4,7A	
Cellule HP	6000	1,42cm ³	1,63	015/06	1-400	CuBe2	Diffraction,	64.1:	
942 0KDar		omm, somm				AI(IFUU)	inelastic and quasi-	0,2 - 3,3	
Cellule ronde HP	6000	0.21 cm ³	0.23	Ø18 / Ø5 2	203	Zero scattering	SANS		38% at 6Å
Petits Angles	0000	Ø5 2mm ·	0,25	010/05,2	295	allov	Diffraction	$G_{6} = 0.07$	50% at 0A
N°: 18029		10mm				TiZr 52.48	Diffaction	at 4,7Å	
Cellule ronde HP	2500	0,21cm ³	0,23	Ø18/Ø5,2	293	Niobium pur	SANS	Nb : Q≥ 2.10 ⁻²	78% at 6Å
Petits Angles		Ø5,2mm ;					Diffraction	above $Q = 5.10^{-2}$ the	
N°: 18029		10mm						spectrum is flat	
Cellule Hélium	6000	4,52cm ³	4,52	Ø48 / Ø12	1-300	Aluminium	Diffraction,		
HP 3 Axes		Ø12mm ;				7049A T651	inelastic and quasi-		
Collula LID	2000	40mm	1 71	014 / 05	1 200	Alumainiuma	elastic diffusion		
Mihamal Emm	3000	0,99Cm	1,71	014/05	1-500		Diffraction,		
3Kbar TOF		טוווונש, אוווונש				7049A 1031	elastic diffusion		
N°: 18553							elastic ultrusion		
Cellule HP	5500	0,99cm ³	1,71	Ø18,1 / Ø5	1-300	Aluminium	Diffraction,		
Mibemol 5mm		Ø5mm ; 50mm	,			7049A T651	inelastic and quasi-		
5,5Kbar TOF							elastic diffusion		
N°: 18551									
Cellule HP CO2	400	0,52cm ³	0,67	Ø10 /	293-360	Niobium pur	SANS		
supercritique		Ø7,15 ; 13mm		Ø7,15			Diffraction		
	7500	2 02 cm ³	6 70	a28 / a10	1 200	CuPo2	Diffraction	TOE	Calculated
	7300	0,95CIII	0,79	010 / 620	1-500	AT(TEOO)	Inelastic and quasi-	0.06-2	2^{1} · 15%
		510, John					elastic diffusion	√2.0,0-2	5,2Å: 6%

Type I: Overview Material pressure limits

The fully plastic state (*pi*) $_{v,pl}$ according to the *von-Mises* criterion, also known as maximum distortion energy criterion, for materials without hardening tendency:

$$(pi)_{v,pl} = \frac{2}{\sqrt{3}} * \sigma_{F} * ln k \qquad k = \frac{d_{out}}{d_{in}}$$

Yield strength: σ_{r} Diameter ratio: k Outer diameter: d_{out} Inner diameter: d_{in} Chosen values: k=3; with $d_{out}=18mm$ and $d_{in}=6mm$

Materials suitable for soft matter and SANS experiments:							
Alloy	Alloy prope	erties with ave	rage values	Calculated values:			
				Fully plastic	Vielding at the		
	Yield	Tensile	Flongation	state (burst	inner laver		
	strength	strength	at rupture	pressure)			
	[MPa]	[MPa]	[%]	[bar]	[bar]		
Aluminium 7049A T6	580	650	8	7358	2977		
CuBe2 AT (TF00) C17200	1242	1365	8	15756	6374		
Ti52.5Zr47.5 zero-scattering alloy	690	840	9	8753	3541		
Stainless steel: M30NW; X4CrNiMnMoN21.9.4 Solution annealed	450	860	40	5709	2309		
Stainless steel: M30NW; X4CrNiMnMoN21.9.4 Cold worked	850	900	15	10783	4362		
M5 [™] from AREVA (ZrNb1)	~300	~450	21	3806	1540		
Nb, reactor grade,soft	110	226	50	1395	565		

Materials probably not suitable for SANS experiments due to their grain size, too small						
Stainless steel PH-type:	1510	1593	15	19155	7749	
Custom465®Stainless H1000						
Russian alloy 40HNU-VI NiCrAl40.4	2000	2100	7	25371	10264	

The influence of a changing k-value for a given material:						<i>k</i> -value
CuBe2 AT (TF00)	1242	1365	8	9941	5378	2
CuBe2 AT (TF00)	1242	1365	8	13141	6023	2.5
CuBe2 AT (TF00)	1242	1365	8	15756	6374	3
CuBe2 AT (TF00)	1242	1365	8	17966	6585	3.5
CuBe2 AT (TF00)	1242	1365	8	19881	6723	4
CuBe2 AT (TF00)	1242	1365	8	23082	6884	5

Pressure cells for soft matter at LLB Type II (window type)

The pros:

- Easy to clean
- Windows are easy to change
- Low window price
- Windows are from different materials
- Easy data analysis due to flat geometry

The cons:

- Low window opening
- Only for SANS
- Used for metallic windows

Window material	Maximum allowable pressure [bar]	Total window thickness [mm]	Transmission [%]	Q-range [Å ⁻¹]
Aluminium 7049A T6	6300	12,2	76 at 13Å	>0,1
Aluminium 2017A	4500	12,2	94,8 at 6Å 78,5 at 13Å	>10-2
Niobium pure	2700	10	80 at 6Å	$\geq 2.10^{-2}$ above Q = 5.10 ⁻² the spectrum is flat

4/10

Pressure cells for soft matter at LLB Type III (windows, Poulter type)

The pros:

- Transparent windows
- Opening 12mm up to 2000bar
- Easy data analysis due to flat geometry

The cons:

- The sapphires must be optical polished and without residual stress to withstand high pressure
- Only for SANS
- Fragile

Sapphire

Average values for the crystal: Tensile strength: 300MPa Compressive strength: 3000MPa The mechanical properties are axis dependent

For high pressure application the Heat Exchanger Method (HEM) growing method should be used and not the Verneuil's method since there is too much residual stress inside the crystal.

Pressure cells for soft matter Type IV (flat cell)

The pros:

- Large sample size in the beam
- Bridgman sealed
- Easy data analysis due to flat geometry

The cons:

- The resistance is lower than a hollow cylinder with the same wall thickness
- The edges produces local stress concentrations
- Machining is complicated without EDM
- EDM remelted surface layer must be taken off to have crack free material, difficult to do in the edges

Manufacturing difficulties due to electro erosion

Figure: Bunk/Hansen: Werkstoffe hoher Beanspruchung am Beispiel der Luftfahrt, Deutsche Gesellschaft für Metallkunde 1982, p,41 ISBN3-88355-055-8

Influence of the machining process on the cycle fatigue strength, technical processes: Schleifen = grinding

Feindrehen = precision turning Grobdrehen = rough turning ECM = Electrochemical machining

(In the ECM process is no tool wear, no sparks are created, mirror surface finishes can be achieved)

EDM = Electric discharge machining

Spannungsausschlag = stress amplitude Lastspielzahl = number of load cycles

The EDM process gives the opportunity to realize complicated contours but the surface layer contains defects, cracks, which are reducing the cycle fatigue strength, if not removed.

Pressure cells for soft matter Type V (high pressure capillary)

The pros:

- The high pressure capillary is easy to obtain
- Various sizes are available
- Up to 14kbar
- Easy to seal

The cons:

- Difficult to clean
- Is made from stainless steel, AISI 304 or 316, HP160, must be Co-free
- Minimum bending radius 5xd

Limitations on belonging material

Valves

Most of the inner parts of the valves are made from 17-4 PH stainless steel, with the outer part made from AISI316, if destilled or heavy water is used, corrosion can occur, therefore the stem material has to be adapted, by choosing another material.

For a long service life of the valve the high pressure should act on the stem and not the seal packing.

Pressure transducers

During the first running of the pressure sensor at high pressure > 8kbar a shift in the zero can often be observed

Fittings

Tubing and fittings which should be used on pressures > 10kbar must be degreased before assembling to seal well. Connecting and disconnecting of the fittings will result in leakage because the material is work hardening.

