

WP 20 « Advanced Neutron Tools for Soft and Bio Materials »

Annie Brûlet Laboratoire Léon Brillouin UMR12 CEA-CNRS

WP 20 « ADVANCED NEUTRON TOOLS FOR SOFT AND BIO MATERIALS »

6 partners:

Participant short name	LLB CEA	HZB	JCNS	ILL	TUM	STFC
Person-months per participant (asked for EC contribution)	20	18	13	68	18	14

2 topics/ 4 tasks:

- Platform for model biological membranes Task 1

- Specific sample environments for soft materials

- Kinetic & Dynamics experiments Task 2
- Humidity chamber with sample changer Task 3
- Cryogen free cryostat with sample changer Task 4

Milestones & Deliverables Task 1

Task / Deliverable / Milestone	DETAILS	Partners in charge of task	Start month	End month	Type of deliverable
Task 20.1	A platform for model biological membranes	ILL*, STFC, CEA	1	48	
M 20.1.1	Optimization of model bilayer systems including natural membrane lipids	ILL, STFC	1	36	
M 20.1.2	Set up a lipid extraction facility to extract and fractionate membranes from real cells	ILL	1	18	
D 20.1.1	Protocols for reliable reconstitution of membrane proteins	STFC	12	48	Report
D 20.1.2	D lipids extraction. Characterization of biomembranes with scattering and complementary techniques.	ILL, STFC, CEA	1	48	Report

TME

IR?

aboratoire Léon Brillouin

Optimization of model bilayer systems including natural membrane lipids

Basic Requirements of Model Bilayer for Reflectivity: large and uniform membrane

Easy to make – Vesicle fusion (or Langmuir Blodgett/Schaefer)..

ire Léon Brillouin

But, substrate effects....

Solution - 'Floating' Bilayers..

Works – But.. only for the simplest lipids Need to hold lower 'support' more firmly.

Solution – Grafted phospholipid on Self Assembled Monolayers

Allows fabrication of membranes from more complex mixtures.

Coverage of Silane SAM never exceeds about 80%. Found that coverage of subsequent membrane usually matches the SAM coverage.

re Léon Brillouir

Latest developments – Gold/Thiolipids

This gives 100% coverage and subsequent improvement in membrane quality.... A.V. Hughes S.A.Holt, A.Soliakov, T.R.Charlton and J.H. Lakey et al. *Submitted to Langmuir.*

Developed novel LB technology for accurate positioning of substrates.

Fully deuterated natural lipid membranes

Yeast cells grown in a deuterated medium (D-lab)

re Léon Brillouin

Lipids extracted with Folch method Phospholipids separated by 2D TLC

Lipids separation (HPLC):

Apolar lipids (chloroform-acetic acid) Polar lipids (methanol)

Separation of sterols from apolar

oire Léon Brillouin

Milestones & Deliverables of Task 2

Task / Deliverable / Milestone	DETAILS	Partners	Start month	End month	Type of deliverable
Task 20.2	Kinetic/dynamic measurements in periodic external fields	JCNS*,CEA,ILL	1	48	
M 20.2.1	Designs of new stop flow observation heads for SANS.	ILL	6	18	
M 20.2.2	Conception and design of MA-LS setup	JCNS,ILL,CEA	1	18	
M 20.2.3	Design an electric field cell for SANS	CEA	1	18	
M 20.2.4	Conception and design of a pressure cell for NSE	JCNS, CEA	18	36	
D 20.2.1	Tests of MA-LS prototype setup	JCNS, ILL,CEA		24	Report
D 20.2.2	Tests of new stop flow observation heads for SANS.	ILL		30	Report
D 20.2.3	Prototype of pressure cell for NSE. Tests	JCNS, ILL,CEA		48	Report
D 20.2.4	Prototype of EF for SANS. Tests. Design of EF for TOF.	CEA	18	48	Report

TME

IR?

aboratoire Léon Brillouin

New observation heads for stop flow ILL

Hellma cell open at the 2 edges 10 x 25 x 1 mm³ ^{ref} 690.225-QS

Cell volume 250 mL but 600 mL really needed to be sure to remove completely the old solution

... Improve the cell filling (homogeneity, duration). Optimize the cell geometry (not rectangular?)

Liquid flow simulations are required

New furnace for T-jump.

A combined static LS / SANS Implement DLS with the flow-through cell of the stopped flow ...

... tests

ée ioratoire Léon Brillouin

LS in fiber configuration permanently fixed on the SANS collimator exit

ME

KWS2 JCNS

T. Schrader

Multi-angle static light scattering combined with stopped flow

Electric field cell with electrodes outside the sample

Comsol simulation

Prototype

at LLB

...Tests on « reference » samples Electric field measurement in situ ? Thermalization (wished) Electric field // or⊥ to the neutron beam

A. Hélary

Pressure cell for Neutron Spin Echo

ire Léon Brillouin

Sample area:ca. 3x3 cm²Thickness:ca. 2mmPressure:10 kbar (if possible)

Tests of windows for Pressure cell in SANS Q Range of NSE

Windows + Myoglobine solution

toire Léon Brillouin

All windows are OK for SANS (keep in mind the low transmission values) ... tests with NSE What design for pressure cell of large sample area: Flat? Collection of cylinders?

Milestones & Deliverables of Task 3

Task / Deliverable / <mark>Milestone</mark>	DETAILS	Partners in charge of task	Start month	End month	Type of deliverable
Task 20.3	Humidity chamber	HZB*,ILL,JÜLICH	1	48	
M 20.3.1	Specifications of the next- generation humidity chambers. Drawings and procurement of components for humidity chambers	HZB, ILL	1	36	Drawings and Report
D 20.3.1	Assembly of the humidity chamber. Tests	HZB, ILL,JÜLICH	36	48	Report

TME

R

hée Laboratoire Léon Brillouin

Humidity chamber Task 3

Review existing systems

NÉC aboratoire Léon Brillouin

SEVERITY REAMENDER

Summary of 22 October Meeting

	Humidity ceiling (at 25 C)	Humidity Stability	Automation for RH change	Equilibrati on time (after RH change)	Contrast variation (H ₂ 0/D ₂ 0)
Gas flow	~95%	~1% (to be tested)	MFCs	minutes	Bubble through mix
Saturated salt	98% (discrete steps)	Weak temperature dependence	Syringe pumps (Sat. and distilled)	hours	Change of sample/ flow into reservoir
Temperature controlled	≤100%	~1% (to be tested)	Peltier/water bath temp	hours	Flow liquid into reservoir
Fixed humid	Same as salt	No regulation	Х	Х	Change of sample
Bulk water	Saturated	Stable	Х	Х	Flow into bulk volume

Task 3: Humidity Chamber

Humidity chamber Task 3

Specifications of

New Humidity Cell

Consensus

 Double walled aluminum cylinder

atoire Léon Brillouin

- Isolation of base from walls (Teflon or ceramic)
- High humidity necessary
- Fast equilibration and long stability necessary

To test

- Gas flow or water troughs
- Addition of circulation fan
- Sensor accuracy and reproducibility
- Finding best 'characterization sample'
- Several samples in one can/several identical cans

matthew.barrett@helmholtz-berlin.de

Milestones & Deliverables of Task 4

Task / Deliverable / Milestone	DETAILS	Partners in charge of task	Start month	End month	Type of deliverable
Task 20.4	Cryogen-free cryostat with sample changer	ILL ,TUM* ,STFC change	1	48	
M.20.4.1	Design and performance estimations of cryostats with sample changer.	ILL,TUM	1	36	Report
D 20.4.1	Drawings of the cryostat.	ILL,TUM,STFC		48	Report

R

phée Laboratoire Léon Brillouin

TME

Cryogen-free cryostat with sample changer Task 4

Compact cryostat:

 Separate sample space and cold head isolation vacuum

atoire Léon Brillouin

- Minimized cold mass
- Remote controlled reload
- Standardized sample holder
- Pin connection for thermal link and thermometry
- Sample in exchange gas via sample container

Cryogen-free cryostat with sample changer Task 4

Dewar

Radiation Shield

Nested links

Heat switch

.... to be solved

toire Léon Brillouin

- Efficiency of heat switch
 - \rightarrow Cool down time
 - →Temperature
 - Thermal connection of sample
 - \rightarrow Pin connection
 - → Standardized sample cans J

J. Peters