

McXtrace - an overview

Powered by McStas technology

McXtrace ---₩

Peter Willendrup [1] Andrea Prodi [4] Jana Baltser [2] Søren Schmidt [1] Martin Meedom [1] Henning Friis Poulsen [1] Manuel Sanchez del Rio [4] Claudio Ferrero [4] Karsten Joensen [5] Kell Mortensen [3] Søren Kynde [3] Martin Petersen [3] Robert Feidenhans' [2] Kim Lefmann [2] Maria Thomsen [2] Carsten Cooper-Jensen [6]

Physics Department, DTU, Kgs. Lyngby, Denmark
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Faculty of Life Science, University of Copenhagen, Copenhagen, Denmark
European Synchrotron Radiation Facility (ESRF), Grenoble, France
SAXSLAB, Denmark (Formerly JJ X-RAY Systems)
European Spallation Source, Lund, Sweden

User base

McXtrace

Features of releases

Beta:

- a. First package build of McXtrace Linux and Windows XP
- b. 2 Example beamlines
- c. Few components

1.0:

- a. Optimized packaging, Linux, Windows7, XP and Mac OSX
- b. Time-propagation
- c. Phase-propagation, wavefront reconstruction experimental
- d. Sample models
- e. Monochromator crystal (Perfect_crystal)

1.1_pre:

- a. Linux, Windows 7, XP, Mac OSX, FreeBSD
- b. Optimized grammar
- c. Chopper model
- d. Faster data file searching
- e. Lots more components
- f. More Sample models
- g. OFF-support anyshape options enabled
- h. Roughness in lenses
- i. Shadow interfaces

Component history - 2009

Sources

- Source_pt
- Source_flat
- Source_div

Optics

- Arm
- Lens_simple
- Mirror_curved
- Slit

Monitors

- E_monitor
- L_monitor
- PSD_monitor
- PSD_monitor_4PI

Misc

• Progress_bar

Samples

Component history - 2012

Sources

- Source_pt
- Source_lab
- Source_gaussian
- Source_flat
- Source_div

Optics

- Arm
- Beamstop
- Chopper_simple
- Filter
- Lens_kinoform
- Lens_parab
- Lens_parab_Cyl
- Lens_simple
- Mirror_curved
- Mirror_elliptic
- Mirror_parabolic
- Multilayer_elliptic
- Slit
- Slit_N
- Twin_KB_ML

Monitors

- E_monitor
- EPSD_monitor
- L_monitor
- Monitor
- Monitor_nD
- PreMonitor_nD
- PSD_monitor
- PSD_monitor_4PI
- PSD_monitor_coh
- W_psd_monitor

Misc

- Progress_bar
- Shadow_input
- Shadow_output

Samples

- Single_crystal
- Saxs_spheres
- PowderN
- Perfect_crystal
- Absorption_sample
- SAXS-samples
- Molecule_2state

McXtrace

Sources

- Source_pt
- Source_lab
- Source_gaussian
- Source_flat
- Source_div
- Source_SPECTRA

Optics

- Arm
- Beamstop
- Chopper_simple
- Filter
- Lens_kinoform
- Lens_parab
- Lens_parab_Cyl
- Lens_simple
- Mirror_curved
- Mirror_elliptic
- Mirror_parabolic
- Multilayer_elliptic
- Slit
- Slit_N
- Twin_KB_ML
- Zone_plate
- Grating

Monitors

- E_monitor
- EPSD_monitor
- L_monitor
- Monitor
- Monitor_nD
- PreMonitor_nD
- PSD_monitor
- PSD_monitor_4PI
- PSD_monitor_coh
- W_psd_monitor

Misc

- Progress_bar
- Shadow_input
- Shadow_output
- SRW_input
- SRW_output
- Samples
 - Single_crystal
 - Saxs_spheres
 - PowderN
 - Perfect_crystal
 - Absorption_sample
 - SAXS-samples
 - Molecule_2state
 - Isotropic_Sqw

McStas / McXtrace inheritance

ID11 - Pink beam monochromator experimental setup

ID11 - Pink beam monochromator

Max 711

Max 711 Powder Diffraction Signal at virtual detector

McXtrace

Max 811 surface diffraction and XAFS beamline

McXtrace

Max 811 surface diffraction and XAFS beamline

Unslit Spatial beam distribution

Reported flux on sample: [2000...20000] photons /s Simulated flux on sample: 20080 photons / s

Neutron style Laue camera

Time resolved studies

Time resolved studies

Anyshape Tomography

Anyshape Tomography

Single Slit

McXtrace

X/m

Double Slit

Triple Slit

Test Data

Why different

Add an offset slit after Side-by-Side KB-mirror

APS ID14 BioCARS

APS ID14 high focus option 1

APS ID14 high focus option 2

1 or 2? simulations can show

• KB-mirrors definitely work

- but are expensive
- not easy to align
- upstream CRLs could work less experience in the community
 - fairly cheap
 - monochromatic-ish
 - quite simple to align (transfocators)

TODO 2012

- Update Manual
- Finish setting up ESRF ID9b
 - skeleton exists
- Prove slit-scatter with crystal sample
- Revamp website
- Publish manual POD (amazon?)
- Consolidate reflectivity models
- Partial Coherence Work
- Finish (a) SPECTRA and (b)SRW interfaces
- Allow python/ruby components?
- McXtrace under ROOT/cling?