Resolution Function of

SANS Diffractometer
with
Refractive Lenses
H. Frielinghaus
F. Lipfert

Components: Neutron Lenses

Purchased from Zeiss and Ingeneric (Aachen) full sets KWS1/2 (2×26)

Effects of phonon scattering calculated
Lenses will be cooled to $\sim 70 \mathrm{~K}$
Cooled lens holder in construction.

Simulation routines for McStas and Vitess existing.

Resolution of Neutron Lenses

Wavelength Distribution from Selector

Simulations:

little gravity
No Gravity:

Strength of this effect $\sim \lambda^{2} D^{2}$ i.e. strongest for low Q.

With Gravity: (peanut)

$1^{\text {st }}$ step of resolution correction: isotropic, rad. averaged

$a_{1}, a_{2}, a_{3}, a_{4}(C, D, \ldots)$ determined by analytical calculations and computer simulations (McStas)
$1^{\text {st }}$ step of resolution correction: isotropic, rad. averaged

Abbrevations:

$$
\begin{aligned}
& \underset{\substack{r_{1} \\
r_{1}}}{ }=\frac{2 \pi}{\lambda D} \cdot \frac{D}{C} \cdot R_{1} \quad \underset{\text { פE:3 }}{r_{2}}=\frac{2 \pi}{\lambda D} \cdot 2 \cdot\left(1+\frac{D}{C}\right) \cdot R_{2} \quad \begin{array}{l}
\text { actully } \\
\text { diameters }!
\end{array} \\
& q_{0}=\frac{2 \pi}{\lambda D} \cdot D \cdot(C+D) \cdot \frac{g m_{n}^{2}}{2 h^{2}} \cdot \lambda^{2} \\
& Q \\
& \text { 1E-3 .. 1E-4 }
\end{aligned}
$$

Simulations with McStas

Radial averaging of a Debye-Scherrer ring

$\Delta Q\left(r_{1}\right)$ from (r_{1} varied, r_{2} small, gravity off, fixed angle)
$\Delta Q\left(r_{2}\right)$ from (r_{1} small, r_{2} varied, gravity off, fixed angle)
$\Delta Q(g)$ from (r_{1} small, r_{2} small, gravity varied, fixed angle)
$\Delta Q(Q)$ from (r_{1} small, r_{2} small, gravity off, real scattering)

Summary of resolution functions:

$$
\begin{aligned}
& \sigma_{Q}^{2}=0.125 \cdot r_{1}^{2}+\left(\frac{\Delta \lambda}{\lambda}\right)^{2}\left(0.021 \cdot r_{2}^{2}+0.667 \cdot q_{0}^{2}+0.333 \cdot Q^{2}\right) \quad \text { Mildner } \\
& \sigma_{Q}^{2}=0.250 \cdot r_{1}^{2}+\left(\frac{\Delta \lambda}{\lambda}\right)^{2}\left(0.016 \cdot r_{2}^{2}+0.472 \cdot q_{0}^{2}+0.236 \cdot Q^{2}\right) \quad \text { Analytical } O\left(Q^{2}\right) \\
& \sigma_{Q}^{2}=0.250 \cdot r_{1}^{2}+\left(\frac{\Delta \lambda}{\lambda}\right)^{2}\left(0.008 \cdot r_{2}^{2}+0.173 \cdot q_{0}^{2}+0.086 \cdot Q^{2}\right) \quad \text { Analytical } O\left(\mathrm{Q}^{4}\right) \\
& \sigma_{Q}^{2}=0.107 \cdot r_{1}^{2}+\left(\frac{\Delta \lambda}{\lambda}\right)^{2}\left(0.026 \cdot r_{2}^{2}+0.096 \cdot q_{0}^{2}+0.242 \cdot Q^{2}\right) \quad \begin{array}{c}
\text { Simulations } \\
\text { McStas }
\end{array} \\
& \begin{array}{lllll}
\Delta \mathrm{Q}\left(\mathrm{r}_{1}\right)=1.6 \mathrm{E}-4 & \Delta \mathrm{Q}\left(\mathrm{r}_{2}\right)=1.5 \mathrm{E}-4 & \Delta \mathrm{Q}(\mathrm{~g})=1.5 \mathrm{E}-5 & \Delta \mathrm{Q}(\mathrm{Q})=0.5 \mathrm{E}-4 & \text { Classical SANS } \\
\Delta \mathrm{Q}\left(\mathrm{r}_{1}\right)=1.6 \mathrm{E}-5 & \Delta \mathrm{Q}\left(\mathrm{r}_{2}\right)=1.5 \mathrm{E}-4 & \Delta \mathrm{Q}(\mathrm{~g})=1.5 \mathrm{E}-5 & \Delta \mathrm{Q}(\mathrm{Q})=0.5 \mathrm{E}-5 & \text { focussing SANS }
\end{array}
\end{aligned}
$$

$2^{\text {nd }}$ step of resolution correction: higher order terms

$$
\left.\begin{array}{c}
f\binom{\delta q_{x}}{\delta q_{y}}= \\
1^{\text {st }} \text { order resolution function }\left[-\binom{\sigma_{x}^{-2}}{\sigma_{y}^{-2}}\binom{\delta q_{x}^{2}}{\delta q_{y}^{2}}\right] \\
\text { (as before) }
\end{array} \underset{\text { corrections }}{\text { slight }}\binom{A_{x}}{A_{y}}\binom{\delta q_{x}^{2}}{\delta q_{y}^{2}}+\binom{\delta q_{x}^{2}}{\delta q_{y}^{2}}\left(\begin{array}{cc}
B_{x x} & B_{x y} \\
B_{y x} & B_{y y}
\end{array}\right)\binom{\delta q_{x}^{2}}{\delta q_{y}^{2}}\right)
$$

a) Fit of smeared theoretical function
b) Desmearing of measured spectrum

Current status:
Most important dependence of $A, B\left(R_{1}, R_{2}, \mathrm{~g}, \mathrm{Q}\right)$ needs to be determined (analytically \& from simulation)

No Gravity

With Gravity

