Scintillation Detectors and Readout Electronics at FZJ-ZEL

March 30, 2009 | Günter Kemmerling, Ralf Engels GSPC – Launch Meeting, PSI Villingen

Contents of the Talk

- 1. Introduction
 - Forschungszentrum Jülich GmbH
 - Zentralinstitut für Elektronik
- 2. Neutron Anger cameras
 - Neutron scintillators
 - One and two dimensional neutron detectors
- 3. Neutron detectors based on position sensitive PMT
- 4. Conclusions

Forschungszentrum Jülich GmbH (FZJ)

• Location:

FZJ – Basic facts & figures

- Founded:
 - December 1956, originally as "atomic research centre"
- Partners:
 - Federal Republic of Germany (90%)
 - Federal State of North Rhine-Westphalia (10%)
- Budget:
 - € 436 million (2007)
- Staff: total ~ 4400, including
 - Scientists: ~ 1250
 - PhD students & fellows: ~ 330
 - Technical staff: ~ 1630
 - Trainees: ~ 350

FZJ – Campus

- Research:
 - Health, energy & environment, information, key technologies
 - 9 institutes & 3 scientific-technical joint facilities
 - Large instruments: e.g. COSY, TEXTOR, SAPHIR
 - High performance supercomputing centre
 - Virtual institutes for research cooperations: e.g. CNI, JCNS

Zentralinstitut für Elektronik (ZEL)

- Scientific-technical joint institute of FZJ
 - R&D projects in scientific instrumentation in close collaboration with other FZJ institutes
 - Synergy effects through similar system solutions in different research areas

ZEL – Basic data

- Key competencies:
 - Analog and digital signal processing
 - Detector, sensor and imaging technologies
 - Control and measurement systems
 - Scientific and technical informatics
 - Intranet communication (JuNET)
 - Lab for prototyping of electronical equipment (e.g. SMD)
- Staff: total ~ 90, including
 - Scientists & Engineers: ~ 33
 - Technicians: ~ 26
 - Trainees: ~ 20
- Work organized in 4 divisions

Detector Systems Division at ZEL

- Group: Detector Development & Nuclear Pulse Processing
 - Discrete analog/digital detector electronics
 - Neutron and gamma scintillation detectors
- Group: Micro-Structure Detectors
 - Si-pad and microstrip detector systems
 - Fast readout electronics for pnCCD-detectors
- Group: Interfacing and fast Digital Technology
 - FPGA based readout electronics
 - Fast homemade bus systems and optical links

Neutron Detector Developments at ZEL

- Group established in 1969
- Early 70's:
 - Developments based on ³BF, later ³He Detectors
- End 70's early 80's:
 - Neutron scintillation detector prototype developments for SNQ
- Mid 80's:
 - Development of neutron detectors for renewed FRJ-2
- Beginning 90's:
 - Prototype developments for ESS
- Since end 90's:
 - Focus on high-rate detectors for FRM-2 & SNS

Instruments with ZEL - Position Sensitive Detectors FRJ-2 Neutron Guide Hall (until May '06)

Standard Neutron Scintillator: GS20-⁶Li-glass

• Neutron capture reaction:

 $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H + 4.79 MeV$

- 6.6 weight% Li, 95% ⁶Li-enriched
- Emission peak at ~390 nm (Ce doped)
- Light yield ~ 6000 photons/n (corresponds ~1.5 MeV gamma)

GS20-⁶Li-glass Efficiency

Test of Neutron Scintillator Characteristics

- Light yield:
 - gamma discrimination, position resolution
- Decay Time:
 - pulse processing electronics, dead time
- Neutron Capture Efficiency

Test Setup:

Comparison of some neutron scintillators

• GS20-6Li-glass

- gamma sensitive at ~1.2 MeV
- fast decay time (~75 ns)
- ⁶Lil-scintillator:
 - light yield: ~9x Li-glass
 - decay time ~1.5 µs
 - hygroscopic, no longer produced
- ⁶Li¹⁵⁸GdB with binder
 - light yield: ~5x Li-glass
 - homogenity problems!
 - decay time: ~1µs

Neutron Anger camera detectors

- Neutron capture creates light in scintillator (e.g. GS20)
- Disperse light cone on PMT array
 - Total reflection at air gap limits angle of light propagation
- Derive position of neutron capture from PMT signals
 - e.g. by Center-of-gravity, Right-left asymmetry etc.
 - Position resolution: $R \sim D_{1/p}$

