

MSGC-GSPC Scintillation Light and Charge measurements Primary and Secondary Light Analysis

B. Guérard, G. Manzin, Hisako Niko, L. Margato

Microstrip plate: BIDIM BIS (virtual cathode)

- Active area 80 x 80 mm²
- Substrate Shott glass (SH8900)
- Anodes 10 μm, Cr
- Cathodes 980 μm, Cr
- Pitch 1mm
- Thickness 0.5mm

Conversion Gap: 12,45mm Gas mixture: ³He (2bar) + CF₄ (3bar) Detention efficiency ~30% @ 1,8 Å

PMT: EMI 9125A

- 28mm diameter (25mm active diameter)
- 300 650 nm (bialkali)

MS plate - PMT distance: 28mm Grid - Suprasil Window distance: 4.5mm Suprasil Window thickness: 6mm

Experimental set-up

FOR SCIENCE

11 days of Vacuum (9 days @ T=70°C) Final pressure: 5 x 10⁻⁸ mbar @ 25°C Detector Filled with: 3He (2bar) + CF4 (3bar)

Neutron Beam collimated by a 3mm diameter hole on 10mm thick B4C (2xsheets, each 5mm thick)

PMT EMI 9125A QE from:

Photodetectors for HESS, Kohnle, et. al. Nuclear Instruments and Methods in Physics Research A 442 (2000) 322-326

Obs.: * 9215A → ET 9125A

Spectral emission in He/40%CF4

Ineffective overlap between the PMT 9125A QE and emission spectra

Previous work

Measurement and data treatment of primary and secondary scintillation light in a gas-filled neutron detector

T.L. van Vuure^a, F.A.F. Fraga^b, S. Fetal^b, B. Guérard^a, G. Manzin^a, G. Martinet^s, N. Rhodes^c, E. Schooneveld^c

PS-PMT Hamamatsu 2486

WAVELENGTH (nm)

Parameter	Description/Value	Unit
Spectral Response	300 to 600	nm
Wavelength of Maximum Response	420	nm
Photocathode Material	Bialkali	-
Effective Area	ϕ 50	mm

3/4

2 bor

2 box CFh

NEUTRONS FOR SCIENCE Previous work

Distribution of the Time between primary and secondary pulses – DeltaT

Aligning the Detector with the beam - Plateau measurement in vertical and horizontal direction:

- •Anodes Signals + Amplifier + counter
- Table displacement by step motors

PHS – Anodes Signals (A1+A2)

NEUTRONS FOR SCIENCE Light and Charge Signals

Charge and Light Signals Acquisition with the ACQIRIS System

Detector settings

VC=0V; VD=0V; HV=1700V VPMT=-950V

ACQIRIS settings

Ch1- PMT signals (Zin=50Ω) Ch2 – Anodes Signals (Zin=1M)

Time window=4µs Trigger Delay=-2.8 µs Trigger Level (Ch2)=150mV Sampling Rate=500MS/s

Green – PMT signals; Yellow – Charge signals (Time scale in μs and Amplitude in Volt)

PMT Signals: 200mV Full scale; saturation on the secondary light Anodes signals: Full scale 2 V; Trigger level=150mV

Events type 01 - Neutron Conversion away from the microstrip

Events type 02 - Neutron Conversion in the vicinity of the microstrip (primary light signal superimposed to the secondary light signal) !?

Events type 03 - Only secondary light; Lower amplitude charge signal - Spread in the time; Gamma events!?

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Events type 04 - Only secondary light; Light signal farther from the trigger (t=0) and Lower amplitude charge signal;

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Events type 05 - Primary light far away from trigger point; Secondary light spread during a long time interval; Lower amplitude for the charge signal;

Obs.: The list is not restricted to the examples given here

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Primary light pulse height spectra

Secondary light pulse height spectra (events classified in three categories)