GSPC-Meeting, Garching, December 10-11 2009

Characterization of CF₄ primary scintillation

<u>Andrey Morozov</u>, Luis Pereira and Francisco Fraga

What, why and how?

Content

Spectral studies +spectrometer calibration <u>Absolute photon flux measurements</u> +detection efficiency vs. wavelength <u>Alpha-source characterization</u> Photon yield +cross-tests

Time resolved measurements

Effect of electric field on CF_4 primary scintillation CF_4 – He mixtures Gas aging and quenching by N_2

Spectral studies

Spectral studies: Setup

CF₄ primary scintillation: Raw spectra

Spectra have to be corrected for:

1) Response of the monochromator and PMT

2) Geometrical factor of the detection

3) Gas aging

Monochromator+PMT response measurements

Spectra corrected for the instrumental response

Spectra from different pressures are not to scale!

Need direct photon flux measurements

Absolute photon flux measurements

Absolute photon flux measurements: setup

Flux vs. PMT-to-source distance

Point-light-source approximation:

If valid, no numerical simulations (unknown error bars!) are needed.

Flux vs. PMT-to-source distance

UV component

VISIBLE component

PMT can "see" the whole light emitting volume!

Flux vs. PMT-to-source distance

Missing double-event photoelectrons are taken into account!

UV component 0.12-1 bar 8% 30% 0.10-

VISIBLE component

Point source approximation is definitely valid for R > 140 mm for all pressures!

No scattering!

Fluxes for the UV and VIS components

Two lines of flux measurements:

Using broad-band filters and interference filters.

Photon detection probability vs. wavelength?

Photon detection probability

Optical beam-line (2 m long) with diaphragms

Relative detection probabilities

UV component

Visible component

PMT: Photonis XP2020Q

PMT: Hamamatsu R1387

35%

Max uncertainties (main contributors: the filters and lamps):

25%

Photon flux in the <u>UV</u> component vs. pressure

Photon flux in the <u>visible</u> component vs. pressure

Similarly, the total flux in the visible component

<u>Uncertainties</u>: Broadband: ~10% IF: 20%@5bar 70%@1bar

CF₄ emission spectra (all corrections are applied)

1.0 1 bar $\cdot 2$ bar 0.8 3 bar Photon flux, a.u. ----- 4 bar 5 bar 0.6 0.4 0.2 0.0 500 300 400 600 700 800 200 Wavelength, nm

Flux measurements have been used to scale the spectra from different pressures

α-source characterization

α-source characterization

 $\sim 2\pi$ emission

α -source characterization

Average energy of α -particles: 3.70 ± 0.05 MeV

 α flux in 2π : 42100 ± 100 s⁻¹

Photon yield

Photon yield calculation

Photon yield: Number of photons (in 4π) produced per MeV of energy deposited in the gas.

Y = Number_of_photons / (α -Rate · Average_Energy) From photon flux measurements
Number of α -particles entering the gas per second multiplied by the

average deposited energy

Photon yield (<u>UV</u> component, integrated)

Photon yield (visible component, integrated)

Uncertainties Broadband: 19% sum in quadrature (50% sum) IF-300 nm: $5 \rightarrow 1$ bar: $26\% \rightarrow 72\%$ sum in quadrature $(67\%) \rightarrow$ 120% sum)

Photon yield: cross-check

The ratios of yields in the UV and visible are compared with the flux ratios from the calibrated emission spectra

Р	Yield ratios	Spectral ratios
bar	UV / vis	UV / vis
1	2.8 ± 1.0	$\sim \! 2.5 \pm 0.8$
2	0.70 ± 0.25	0.76 ± 0.15
3	0.34 ± 0.12	0.50 ± 0.10
4	0.22 ± 0.08	0.35 ± 0.07
5	0.17 ± 0.06	0.23 ± 0.05
	Overlap!	

A. Morozov, GSPC-Meeting, December 10-11 2009

1.0

0.5

0.0

Time spectra

Electronics:

Start and stop → fast preamps → CF triggers → Time-to-amplitude converter → Multi-channel analyzer

Time spectra: UV component

Two distinctive decay structures (both ? exponential)

Indications of a very weak non-exponential tail

Weak pressure dependence

Time spectra: Visible component

Strongly non-exponential decay

Very likely there is a strong contribution from recombination

Clear pressure dependence

Typical effective lifetimes

Effective lifetimes measured in the absence of electric field are:

~4 - 6 ns for the UV component and
~8 - 16 ns for the visible component

Both the visible and UV time spectra show no indications of any slow (effective lifetime on the order of 100ns and longer) decay components.

Effect of the electric field

Electric field: Spectra

No effect for low pressures!

For medium-high pressures: Very strong reduction of the visible component and an increase of the UV component with the field!

At 5 bar: Strong reshaping of the UV component with the field!

Electric field: UV component

Electric field: Visible component

Electric field: Time spectra of the UV component

Very small difference!

E-field dependence: Visible component

Very different behavior at high and low pressures!

E-field dependence: Why UV and visible behave differently?

Effect of helium: spectra and flux measurements

Absolute flux measurements:

UV component (pressures are in bar) $3 \text{ CF}_4 + 2 \text{ He:}$ same as $3 \mathrm{CF}_{4}$ $2 CF_4 + 3 He:$ 20% higher than $2 CF_4$ $2 CF_4 + 3 He:$ same as $2 CF_4$ $1 \text{ CF}_4 + 4 \text{ He:}$ 40% higher than 1 CF_4 $1 \text{ CF}_4 + 4 \text{ He:}$ same as 1 CF_4

Visible component (pressures are in bar) $3 \text{ CF}_4 + 2 \text{ He:}$ same as 3 CF_4

Effect of helium: Time spectra

UV component

Visible component

Mixture of 3 bar $CF_4 + 2$ bar He: Helium has no effect on the time evolution of the CF_4 decay, both with and without electric field.

Gas aging studies: Time spectra

UV component

Visible component

Both components show significant aging!

N₂ quenching

UV component

Visible component

No effect!

Strong effect!

Visible component is strongly affected by nitrogen admixtures!
Bad news, since CF₄ purifiers (effective) do not remove nitrogen.
A. Morozov, GSPC-Meeting, December 10-11 2009

Boiling: N₂: 77 K CF₄: 145 K Thank you!