NMI3/FP7 Launch Meeting, March 2009

CF₄ primary scintillation: UV-visible spectrum and photon yield

A. Morozov, L. Pereira, M. Fraga, L. Margato and F. Fraga

LIP-Coimbra

Content

- Spectra from 200 to 800 nm (1 to 5 bar)
 - Intensity calibration
- Photon flux (absolute measurements)
- α-source characterization
 - Flux, energy distribution
- Photon yield
- Effect of the electric field

Spectral studies

CF₄ primary scintillation: Raw spectra

Gas aging effects: UV component – 5% drop over 3 hours red component – 20% drop over 3 hours

Spectra: Intensity calibration

Calibration light sources:

- Tungsten strip lamp (needs focusing): 450-800 nm
- Halogen lamp: 320-800 nm
- Halogen lamp + interference filters: 300, 340, 400, 488, 533, 633 nm
- Deuterium lamp: 200-360 nm <u>!Old calibration!</u>

Response measurements

Huge difference in photon fluxes from the lamps and the gas cell

Have to use neutral filters!

Slit width dependence?

Slit width effects

Conclusion: 0.24 mm and more – consistent results

Monochromator+PMT response curve

Instrumental response-corrected spectra

Absolute photon flux measurements

Only visible region!

Flux vs. PMT-to-source distance

Wavelength-integrated (500 – 800 nm) photon flux

Photon detection probability?

Photon detection probability

Has been checked with interference filters: 533 nm (~10 nm FWHM) 633 nm (~3 nm FWHM)

Photon flux in the red component vs. CF₄ pressure

Spectra corrected for the geometrical factor

α -source characterization

 2π emission

Collimated emission

Energy distributions

 α -particle flux in 2π is 592 ± 5 s⁻¹

Photon yield (red component, integrated)

Effect of the electric field

Similar behavior at lower pressures

Future work

- UV-component
 - A freshly calibrated D_2 lamp is needed
 - Have to use more UV-sensitive monochromator and PMT for spectral and flux studies of the UV component
- Red component
 - Extend to higher pressures where is the saturation?
- Yield uncertainty estimation
 - Need better signal-to-noise ratio in absolute measurements
 - Cross-check with another PMT
 - Accurate transmission/reflection measurements