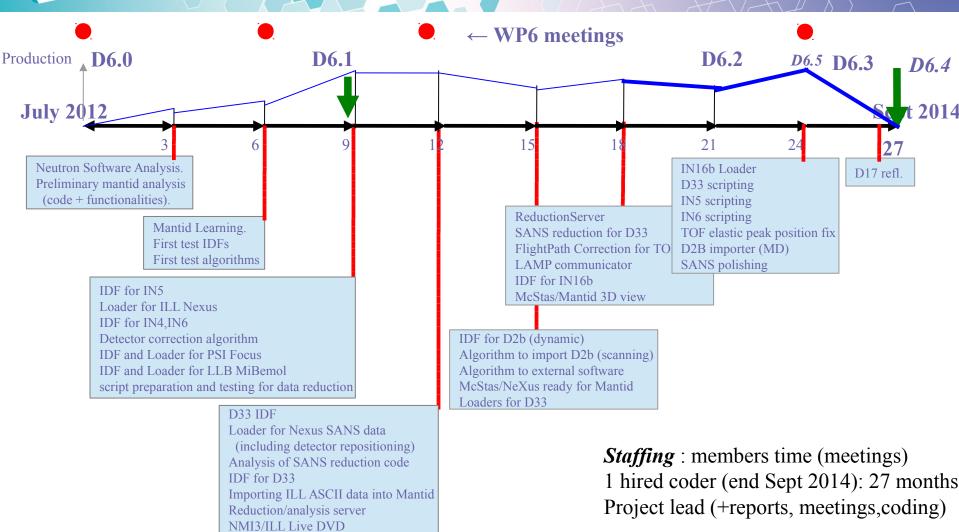


Data Analysis Standards

(WP6)


ILL (lead), STFC/ISIS, TUM and JCNS (FRM2), PSI, HZB, CEA LLB, HZG/Hamburg, ESS Lund/Copenhagen http://nmi3.eu/about-nmi3/networking/data-analysis-standards.html

9 scientific computing groups contributingOur tasks: evaluate and facilitate common development in reduction/analysis for n/μ

- Task 1 : Review existing data analysis software and practices of software developers
- ✓ Task 2: Review existing solutions for a common data analysis infrastructure
- Task 3: Develop prototype software in chosen solution for representative applications
- Task 4: Evaluate prototype software (Autumn 2014)

WP6 – progress overview

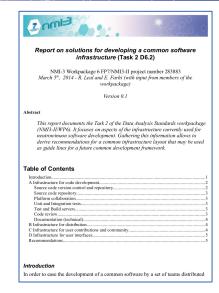
Task 3: 200+ commits 17 kLOC

We have reviewed the current software landscape

- Evaluated 24 software for n/μ
- Only 5 involve international collaboration
- All active projects (7) use repositories
- Produced a LiveDVD for evaluation/schools
- All recent software use Object Oriented programming
- Active software use mainly: Fortran, C, C++, Matlab, IDL, Python languages, NeXus is spreading
- Mantid is today the largest project (by far)

Recommendations: Necessity to identify code redundancy and propose low-level shared libraries for e.g. models, algorithms, I/O routines, interface design templates.

These should follow adopted standards.


There is no trend: old software do as good as recent ones

- What counts is the efficiency, that is the physics/math
- What remains in the end is code that is/can be maintained
- Interoperability could be improved by adopting standards

We have reviewed infrastructures used for development

- Code location (repository), Collaborative work, Unit testing, Build servers, Code review, Technical documentation
- Software distribution
- User contributions
- Interface homogeneity

Recommendations: provide a community based development infrastructure with e.g. GIT/SVN, Redmine platform, Jenkins testing/build, Deb/RPM repos, favour user contributions.

Relying on attractive commercial solutions may not be a reasonable solution.

Prefer community based infrastructure:

- SVN/Git server for storage
- Redmine server for management
- Jenkins build for testing/deployment
- Package repository for distribution

We have experimented ideas – major WP Task

All code published (github, Mantid, NMI3 web)

http://www.nmi3.eu/about-nmi3/networking/data-analysis-standards

•Mantid contribution available in Mantid release 3.2.1

Helped FRM-II Mantid dev

Report on the development of prototype software (Task

Report on the development of prototype software (Task 3 D6.3)

NMI-3 Work-package 6 FP7/NMI3-II project number 283883 Sept 10th, 2014 - R. Leal and E. Farhi (with input from members of the workpackage). Version 0.2.

Abstra

This report documents the Task 3 of the Data Analysis Standards workpackage (NMI3-II/WP6). It details the software that was produced during this project, with code for Mantid and other projects.

Table of Contents

troduction.	2
ontributed Mantid loaders	
ontributed Mantid algorithms	
ontributed Mantid instrument definitions	
ontributed Mantid framework changes	
ther contributions: AllToMantid and reductionSever.	
AllToMantid.	5
reductionServer	
ppendix: code produced.	
LoadILL	
LoadILLAscii	12
LoadILLIndirect	16
LoadILLReflectometry	
LoadILLSANS	
LoadLLB.	31
LoadSINQFocus → LoadSINQ	35
ConvertEmptyToTof.	
CorrectFlightPaths	43
DetectorEfficiencyCorUser	45
SaveILLCosmosAscii	48
SetupILLD33Reduction.	49
AllToMantid: communicator.	57
AllToMantid: workspace	59
AllToMantid: lamp.	61
ReductionServer: main.	63

WP6 - Task 3 - Mantid Loaders

Get a data file (NeXus) → create a 'workspace' (in memory)

Algorithm	Description	Instrument
LoadILL	Loads a ILL nexus file.	ILL: IN4, IN5 and IN6
LoadILLAscii	Loads ILL Raw data in Ascii format.	ILL: D2B
LoadILLIndirect	Loads a ILL/IN16B nexus file.	ILL: IN16B
LoadILLReflectometry	Loads a ILL/D17 nexus file.	ILL: D17
LoadILLSANS	Loads a ILL nexus files for SANS instruments.	ILL: D33
LoadLLB	Loads LLB nexus file.	LLB: MiBemol
LoadSINQFocus → LoadSINQ	Loads a FOCUS nexus file from the PSI	SINQ: FOCUS

In addition: import IN10, IN13, IN16, McStas

WP6 - Task 3 - Mantid Algorithms

Convert workspace(s) into e.g. an other one

Algorithm	Description	Class
CalculateEfficiency	Calculates the detector efficiency for a SANS instrument.	SANS
ConvertEmptyToTof	Converts the channel number to time of flight.	TOF (ILL)
CorrectFlightPaths	Used to correct flight paths in 2D shaped detectors.	TOF (ILL: IN5)
DetectorEfficiencyCorUser	This algorithm calculates the detector efficiency according the formula set in the instrument definition file/parameters.	TOF (ILL: IN4, IN5, IN6)
EQSANSDarkCurrentSubtraction	Perform EQSANS dark current subtraction.	SANS (minor modification)
EQSANSQ2D	Workflow algorithm to process a reduced EQSANS workspace and produce I(Qx,Qy).	SANS (minor modification)

WP6 – Task 3 – Mantid Algorithms 2

SANSAzimuthalAverage1D	Compute I(q) for reduced SANS data	SANS (minor modification)
SANSBeamFinder	Beam finder workflow algorithm for SANS instruments.	SANS (minor modification)
SANSSensitivityCorrection	Perform SANS sensitivity correction.	SANS (minor modification)
SaveILLCosmosAscii	Saves a 2D workspace to a ascii file usable by COSMOS/LAMP	SANS
SetupILLD33Reduction	Set up ILL D33 SANS reduction options.	SANS (ILL: D33)
TransmissionUtils		SANS (minor modification)
IDF_to_PLY	Convert an IDF into PLY/OFF	Geometry (prototype)

Many other existing algorithms can be used (Sqw, integration, ...)

WP6 - Task 3 - Mantid Instr. Definitions

Describe an instrument detector geometry

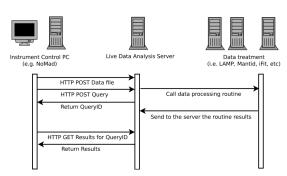
File	Description	Has configurable parameters	
D2B_Definition	ILL: D2B		•
D17_Definition	ILL: D17	Yes	
D33_Definition	ILL: D33	Yes	
FOCUS_Definition	SINQ: FOCUS		
IN4_Definition	ILL: IN4	Yes	
IN5_Definition	ILL: IN5	Yes	
IN16_Definition	ILL: IN16	Yes	
IN16B_Definition	ILL: IN16B	Yes	
MIBEMOL_Definition	LLB: MiBemol		

WP6 Task 3 – Other contributions

Mantid:

• geometry upgrade to allow merge of a set of geometries (for e.g. scan)

AllToMantid:


- •interface Mantid with any external software by file I/O and pipes.
- Tested with LAMP and iFit.

ReductionServer:

- a server that gets requests for computational tasks
- distributes them to computational applications, and reports results.

WP6-Task 4-Evaluation

Evaluation of prototyping when project ends (Sept 2014)

Support for TOF spectrometers: functional (powder/liq), no SX

Support for SANS: functional (|q|, no SX style)

Support for BackScatt: mostly functional

Support for DIFF: limited (not for scanning instruments)

Support for Reflectometers: limited (but improving)

Support for TAS: none (not for scanning instruments)

Trend: Mantid can handle most, but not all types of experiments. Its **coding effort** is significant. Should be complemented with other projects in a coherent way.

Currently the only international effort, with NeXus.

Most coding effort turned towards Mantid

9 importers coded in 2 years \rightarrow 2+ month/instrument Use pre-existing Algorithms with minor adjustments when possible.

The SX case (VATES) which was a motivation for the WP6 has not been achieved.

Mantid not adapted to 'scanning' instruments (low-level classes).

TAS, DIFF (Spin-Echo)

Commit procedure is complex (ticketing and validation)

Same reason to adopt Mantid as to adopt NeXus:

It is an international collaboration Good marketing

Today, Mantid represents a major investment for ISIS and SNS. Some staff working on it at FRM2, PSI and ILL.

However, it does not prevent to try other solutions, interoperable, simpler. Some specific topics are missing and may be addressed with alternative solutions (e.g. scans...). WP6 web site holds the production of the work-package

http://nmi3.eu/about-nmi3/networking/data-analysis-standards.html

Software, reports, example data files and scripts

Some money left in WP to hold a workshop.

The next EU call 'SINE2020' includes items on data reduction/analysis/simulation.