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Abstract

This report documents the Task 4 of the Data Analysis Standards work-
package (NMI3-II/WP6). It deals with the evaluation of the prototype software 
that was produced during this project.
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1. Introduction

During the Data Analysis Standards work package (NMI3-II WP6), most of the production phase 
was focused at demonstrating that the Mantid project could be used for continuous neutron source 
instruments. As a result, 7 Mantid instrument data loaders, 6 new treatment algorithms 
(correction/reduction), and 6 minor corrections to existing algorithms were produced. In addition, 9 
instrument detector geometries were described. The produced code is available in the Task 3 report 
D6.3, as well as on the work-package web page <http://nmi3.eu/about-nmi3/networking/data-
analysis-standards.html>, and is now mostly included in the Mantid release. In this report, we focus 
on the code contributed to the Mantid project <www.mantidproject.org>. Two other minor projects 
developed during the WP6, the reductionServer and the AllToMantid algorithm, will not be 
considered here. Also, it is out of the scope of this document to benchmark the accuracy/efficiency 
of the Mantid algorithms compared to other software. We assume that, in case of any difference, 
once the necessary algorithms have been produced, the maintenance work would allow to identify 
and possibly correct/explain these.
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2. Mantid code metrics

We perform a code analysis of the Mantid project <http://mantidproject.org> using standard metrics
tools, mostly relying on the code size, number of lines of code, number of contributors, etc. We 
assume that most of the scientific, instrument focused, contribution resides in the Framework 
(Algorithms and underlying objects), as well as Scripts, instrument definitions and possibly Vates. 
This is indeed where the 'scientific' part resides, and where the loading, and reduction steps are 
stored. In the following we shall refer to the 'Algorithms' as the Framework, scripts, Vates and 
instrument definitions. For the analysis presented below, we used the Mantid git repository as of 
Oct 31st 2014.

The Mantid project was started in 2008. We can thus estimate the daily production for the duration 
of the 7 years (with 250 working days/year) up to now as 840 LOC/day, 48.5 kb/day and 2.7 
files/day for the eligible 'Algorithms' contribution part listed in the Table 1, and all contributors. The
corresponding whole Mantid production is 1307 LOC/day. The total number of LOC increases 
rather linearly with time since 2008, as 341 kLOC/year. Also, we can compute the mean LOC 
length as 59 characters and 64 characters for the 'Algorithms' and the whole Mantid project 
respectively.

Mantid part LOC Size (kb) files

Framework 995455 48136 3928

Scripts 75561 10752 272

Vates 32711 2352 297

Instruments 366314 23624 276

Total 'Algorithms' 1470041 84864 4773

Total Mantid Code 2287130 143964 6556

Table 1: Selected Mantid parts analysis (Oct 31st 2014 git) using <cloc.sourceforge.org>. The
LOC is the number of lines of code (including comments and blanks). A kb is 1024 bytes.

According to the OpenHUB Mantid page <https://www.openhub.net/p/Mantid>, the total number of
contributors in Mantid is given as 77 contributors (38229 commits) since 2008, 47 contributors in 
the last 12 months (9108 commits), and 26 contributors (697 commits) in the last month. The 
development rate has clearly increased since the origin of the project in 2008. Since 2011, the mean 
number of contributors in Mantid is about [20-25] continuous coders. The analysis of the 
production of each contributor shows that 64 % of the total code has been produced by the 10 most 
prolific coders. The Mantid code base grows regularly of about 341 kLOC/year.

There is no easy way to find the exact number of contributors for the 'Algorithms' part 
corresponding with the Table 1. As an approximation, we shall use the ratio of the listed Mantid 
parts LOC to the total Mantid LOC, that is 1470041/2287130=0.64. Similarly, when using the size 
ratio and the file number ratio, we get estimates of 0.59 and 0.72 respectively. Using the 
intermediate LOC ratio 64% estimate, we can derive an effective number of about [20-25] 
*64%=[13-16] contributors for the Algorithms, scripts, instruments and Vates. Each contributor cost
can be estimated using a 60 keuros/year/contributor cost (rather on the low side), that is 242 
euros/working day/contributor, including taxes.

Then, we draw the number of lines of 'Algorithms' code produced per contributor per day as 840/
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[13-16] = 52-64 LOC/day/contributor, 3-3.7 kb/day/contributor, and 0.16-0.21 file/day/contributor. 
Merging these estimates, we derive a Mantid 'Algorithm' cost per line of code of 3.7-4.6 
euros/LOC.

The current cost on the whole 'Algorithms' part can be inferred as [13-16]*242 = 3.1-3.9 
keuros/day, and the whole Mantid cost is 4.8-6.0 keuros/day, or 1.2-1.5 Meuros/year (using the 64%
ratio). Integrated on the whole Mantid life-time and using the total number of LOC for the Mantid 
project, we derive an estimate of about 8.4-10.5 Meuros, which is to be compared with the CoCoMo
cost estimate of 29 M$ computed with the OpenHUB service. 

Let's now focus on the functionalities provided by Mantid, and more specifically on the mean effort 
required per Algorithm available for the end-user. The number of 'public' algorithms listed on the 
Mantid documentation <http://docs.mantidproject.org/nightly/algorithms/index.html> is currently 
626. These functionalities include for instance loaders, data correction/reduction, general operators, 
input/output filters, instrument specific methods, … In addition, the import routines are designed in 
conjunction with an instrument definition file, which specifies the geometry of the detector pixels. 
Summing up these parts, we divide the results in Table 1 by 626 and draw that every 'public' 
Algorithm functionality requires about 2348 LOC, 135.56 kb and 7.6 files, which corresponds to 36
to 45 coding work days and 8.8-10.8 keuros.

Last, we may estimate the maintenance effort per file by analysing their history. We point out that 
maintenance is a major task in the life of a software. Bugs have to be solved during the whole 
software life-time. We look at how many commits are needed per Algorithm for its 'support'. Often, 
the creation phase is visible as regular commits, then the commits become sparser. We make an 
analysis of the Framework/Algorithms commit dates and number (based on 20 different Algorithms 
code history, chosen randomly), and find that in Mantid the mean number of commits to create an 
algorithm is 9 spanning on about a year, and its maintenance phase, up to now, corresponds with 6 
commits (in the following 2 years after the initial development year). As the maintenance is never 
finished, we have to be cautious with these estimates. However, once created, the maintenance can 
only increase, reducing as a side effect the creation capability of the work force, as long as the new 
code production goes on. Some bugs are easy to fix, some others may require a long search and 
even a full rewrite of lower level parts. 

From these considerations, if we assume that an initial coding year resulted in 9 commits, then the 
next years will require about 3 commits every year. The maintenance level per year is then around 
30% of the initial development effort. This estimate may be over-estimated, especially as one may 
consider that 'maintenance commits' involve less work than 'development commits', but it seems 
realistic to assume that it is above 20% for the Mantid project. In practice, maintenance is never 
ensure to be 'easy'. Some bugs may be easily fixable, but other require in-depth search and large re-
coding. This 20% number corresponds with a software life-span of 5 years, which means that after 
that time, the existing developers would mostly maintain the existing software. Any new 
functionality would require new man-power.
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Mantid code metric Value

Daily production, lines of code 840 in 'Algorithms', 1307 total in LOC/day

Active contributors (2012-2014) 13-16 in 'Algorithms', 20-25 total

Daily production, per contributor 52-64 LOC/day/contributor

Cost per day, current (60 keuros/man-year) 3.1-3.9 keuros/day in 'Algorithms', 4.8-6.0 total

Cost per LOC 3.7-4.6 euros/LOC

Effort per 'public' algorithm 2348 LOC, i.e. 8.8-10.8 keuros, i.e. 36-45 days

Maintenance work ratio About 20-30% of initial effort, per year

Table 2: Metrics for the Mantid 'Algorithms', which include the Framework, scripts, instrument
definitions and Vates.

3. Work package WP6 Data Analysis code metrics

The Data Analysis Standards work-package (NMI3-II WP6 <http://nmi3.eu/about-
nmi3/networking/data-analysis-standards.html>) focused on an evaluation of current software used 
in the neutron scattering community. It mostly focused on the Mantid project. R. Leal was hired to 
code Mantid algorithms needed to support continuous neutron source instruments. The project 
spanned over 27 months, from which 20 months were devoted to Mantid to produce 7 loaders, 6 
new treatment algorithms (correction/reduction), and 6 minor corrections to existing algorithms. In 
addition, 9 instrument geometries where described. The supported instruments are IN16b, D2b, 
D33, IN4, IN5, IN6 at the ILL, MiBemol@LLB, Focus@SINQ/PSI. In addition, the IN10, IN13, 
and IN16 loaders at the ILL were contributed out of the NMI3-II project. Last, 3 lower level data 
object modifications were proposed to support 'scanning' instruments (such as diffractometers and 
TAS machines), but were not retained as they resulted in large instabilities of the whole existing 
Mantid infrastructure. These contributions are detailed in the NMI3-II WP6 Task 3 report (D6.3).

In total, 77437 lines of code have been pushed (166 commits) into Mantid, that is about 186 
LOC/day. The code production has thus been higher than the mean Mantid corresponding metric.

We point out that only importers and basic data reduction were produced for the above instruments. 
It is expected that some of the other existing Mantid algorithms can be used further to process the 
created work-spaces after importing data files. However, this does currently not hold in the case of 
the 'scanning' diffraction instruments that were considered during this work package, in which case 
specific algorithms have to fully coded for most of the data treatment work-flow (see below).

We have collected data files from the ILL cycle 2014/3 produced by the instruments IN10, IN13, 
IN16 (cycle 2013/1), IN16b, D2b, D17, D33, IN4, IN5, IN6. We have installed the 'nightly' Mantid 
package dated Dec 2nd, 2014, and attempted to import these data files in MantidPlot. However, files 
could not be imported for 5 of these 10 instruments (IN10, IN13, IN16, D17, IN16b) from which 2 
(D17 and IN16b) are handled by loaders from this WP6 project. The D2b data file could be 
imported as an 'MD' group, but can not be plotted nor used by any other existing Mantid algorithm. 
This test result is that 2 data file formats (D17,IN16b) loaders out of 7 (IN16b, D2b, D17, D33, 
IN4, IN5, IN6) are not functional (i.e. 28%). For D2b, nothing could ever be done with data loaded 
into a Mantid MD workspace – it was not functional before and it is not now (brings failure ratio 
from 28 to 42%).

We conclude 28-42% of the Mantid ILL loader algorithms are not functional after the funding of the
WP6 project stopped in September 2014, that is 3-4 months. Assuming an exponential decay law, 
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we conclude that the mean algorithm half-time is 3-7 months.

In order to estimate the work needed per instrument, we analyse the Mantid python scripts produced
during the NMI3-II WP6 for a few instruments. We find that these scripts call from 6 up to 14 
different algorithms in order to produce reduced data as currently obtained with LAMP 
<http://www.ill.eu/fr/instruments-support/computing-for-science/cs-software/all-software/lamp/>, 
not including the geometry description. Looking at the LAMP 'SIM cards', we find that each 
instrument requires about 4-7 calls to specific functionalities. We then draw that about 6 methods 
per instrument is a conservative estimate of the effort per instrument. 

With the current Mantid software hierarchy, it was found that it is difficult to import a series of non 
overlapping data acquisitions using the same detector in different locations, such as when using e.g. 
some scanning powder diffractometers and triple-axis spectrometers on continuous neutron sources.
This type of data sets can be loaded into Mantid as an MD workspace, with one of the dimensions 
being the scan step, but the existing Algorithms can not be used to treat that data, not event to 
visualise it in a sensible way. Consecutively, the reduction and analysis algorithms would need to be
written specifically for each of these data storage representations. Alternatively, the importation as a
group of acquisitions did not succeed as the instrument description must then, in the current Mantid 
framework, be common to all data sets, which is not the case when the instrument moves. In the 
case where the scan configuration used during the acquisition is always the same (e.g. 25 scan steps 
on D2b at the ILL), it would be possible to describe a large 'virtual' detector, and fill it iteratively 
with each separate scan step to reconstruct the final full acquisition. 

NMI3-II WP6/Mantid code metric Value

Mantid Algorithm half-life time 
without maintenance

3-7 months (rough estimate)

Mantid Algorithm effort per 
supported instrument

6 'algorithms', 14 kLOC, 51-64 keuros, 0.86-1.08 man-year

Table 3: Refined metrics for the Mantid 'Algorithms' obtained from the WP6 produced code.

4. Mantid evaluation: Developer point of view

A modern, large software project

The Mantid project satisfies most of the recommendations listed in our Task 2 report D6.2. It 
provides a source version control system (Git), stored on the free (yet commercial) GitHub servers. 
It makes use of a collaborative platform (currently Trac, emails and Skype/Slack), has a very large 
set of unit/integration tests and automatically builds installation packages (using a Jenkins 
integration server). Each new code commit has a review process (using Git pull requests) which is 
evaluated within the developer team. The documentation is automatically generated and pushed on 
the project wiki pages.

We point out that these infrastructure recommendations are not specific to Mantid, as most modern 
projects present similar features (nMoldyn, McStas/McXtrace, LAMP, iFit, PyGSAS, BornAgain, 
SasView...).

In addition, Mantid provides developer specific tools. An extensive documentation on how to 
contribute, to set-up a developer system, to use coding standards, is available from the project web 
page. One significant feature is that end users can submit python scripts and algorithms to a 
dedicated, easily accessible upload area, which highly facilitates contributions without needing a 
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full authentication process as a Mantid developer.

On the developer side, python binding have been implemented to most C++ user level classes, 
which greatly help in writing python algorithms to contribute e.g. on the exchange upload area. 
These bindings come with examples, and there are scripts to generate the skeleton for new 
contributed Algorithms.

Code size and complexity

The current Mantid code base is larger than 2 MLOC, as indicated in Table 1. As a consequence, the
compilation time is significant, e.g. 5 to 10 minutes as reported by the Mantid Jenkins server at 
<http://builds.mantidproject.org/>. This also means that the development procedure can become 
tedious with iterative changes and compilations, until new code is functional. This time may be 
reduced by splitting the project into independent sub-projects, requiring targeted and faster 
compilations upon code change. The test procedure is split into system tests, which last for about 3 
hours, and performance/local tests which typically last about 10-20 minutes. As testing is part of the
contribution procedure, it may in some cases represent a limiting factor in the code production.

Every change, including small bug fixes, must follow the same procedure: create a ticket, build 
locally, test locally, build and test in the build servers, pass tests by other developers, and eventually
merge in the master branch. This procedure is necessary for such large projects to ensure at all time 
a stable repository, but can span on very long periods of time. In practice, we have in some cases 
experienced waiting of the order of a month between an initial change request and its final 
appearance in the Mantid master repository.

Due to the large code base, replicated code is common along the project. The Algorithms code 
could be made smaller by generalising the use of shared auxiliary functionalities, sorted by e.g. 
technique so that they are easy to find when starting a new Algorithm. With time, many technique 
and even instrument specific Algorithms have been implemented, whereas often some of these 
Algorithms could be made more general so that they can be re-used widely by other Algorithms. In 
the same spirit, Standard Operating Procedures (SOPs) should be advertised to avoid for instance 
redefining  (and other constants) in many places. The code architecture has reached a high level of 
complexity, with extensive hierarchical class levels, and many similar yet different classes that 
could in some cases be merged. 

Last, the configuration of a Mantid development system requires the installation of about 30 third-
party libraries, some of them being difficult to find for some systems. For instance, installing the 
Vates/Paraview bindings on a Debain/Ubuntu 14.04 system (current long term support) was found 
impossible due to unsolved library conflicts. MantidPlot currently requires a specific outdated 
ParaView version (version 3.98 customized by the Mantid team), incompatible with any other 
ParaView installation (currently version 4.3).

A way to solve most of these issues is to strengthen communication between developers, as well as 
enriching the coding standards and documentation for developers. General chat rooms, as used 
today, may be complemented with more dedicated chat rooms focusing on specific issues. The 
status of the infrastructure organisation and code hierarchy should be discussed to trigger code re-
factoring on a regular basis (e.g. developer meetings), with assigned coders.

5. Mantid evaluation: User point of view

The Mantid project uses the MantidPlot user interface, which derives from QtiPlot 
<http://www.qtiplot.com/>, an alternative project to e.g. Excel, Origin, SigmaPlot, and Igor Pro. 
QtiPlot is a commercial product. This interface was initially developed as a spreadsheet-type 
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application, with plotting capabilities for 2D/3D graphs, and native python scripting. 

The Mantid infrastructure provides a mechanism to automatically generate dialogue boxes from an 
Algorithm class. This way, most dialogue boxes benefit from a unified rendering which may be 
appealing to non-expert users. A large effort has been achieved end of 2014 to modernise the 
documentation, which provides help for every public Algorithm, including example use from the 
script level Python console.

As stated above, users can also contribute any file (e.g. data file, python scripts, …) into a shared 
upload area, specifying the author, and the description of the contribution. This feature is an 
excellent way to foster collaboration and exchange, but still requires a significant level of 
knowledge regarding both python and the Mantid infrastructure.

The installation package is large, and it requires a large number of 3rd party libraries to be installed. 
As a consequence, the installation takes a significant amount of time to complete, and may seem 
complex on some systems. 

The user interface includes by default an extensive list of functionalities which may not all be 
needed by the end user. A solution to this problem may reside in the existing capability to configure 
the appearance of the MantidPlot interface (choose the default facility, the algorithm categories to 
show, as well as the visible toolbars). This feature should be advertised, and the authors may even 
distribute specific facility-oriented packages with pre-defined simple configurations.

The rendering of 2D/3D plots inherited from QtiPlot are somewhat limited compared to other 
commercial products as IDL, Origin, Igor, Matlab. This is particularly visible in the 3D plot 
rendering. The external plotter through ParaView, when properly installed, shows a simplified 
version of the ParaView engine which is more adapted to end-users, but remains much more 
complex than for instance a pure VTK surface/volume renderer as implemented in nMoldyn 4.
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