Wavelength-encoding by Bragg diffraction

Ken Andersen, ILL

A.Schneidewind, TU-Dresden & FRM2 K. Siemensmeier, BENSC, HZB J. Saroun, CAS, Prague + everybody interested

Henrik M. Rønnow Laboratory for Quantum Magnetism (LQM), EPFL

Multiplexing

$I = N\Phi_{incident} \frac{\partial^2 \sigma}{\partial \Omega \partial E_{final}} \Delta \Omega \Delta E_{final}$

Resolution $\propto \Delta \Omega \Delta E_{final}$

Solution : measure several $I_{ii}(\Delta \Omega_i, \Delta E_i^{final})$

Multiple Energy Analysis

- Time-of-flight:
 - Requires pulsed monochromatic incident beam
 - Continuous source: must chop the beam
 - Pulsed source: must monochromatize the beam
- Bragg-diffraction:
 - E.g. triple-axis spectrometers
 - scatters one energy the rest continue
 - Idea: have consecutive crystals, scatter different energies

Two approaches

- Crystal-fibre bundles
- Consecutive stack of crystals blades

The RITA-concept

- Divide TAS analyser in multiple blades
 - SPINS
 - UFO
 - IN8-IMPS
 - PUMA-project
- Limitation:
 <u>1-8.1</u> -0.05 <u>0.0</u>
 <u>Hin (h 0.1)</u>
 Hin (h 0.1) Hin (h 0.1) Hin

Multiple angles

- Neutrons scatter in 'all' directions
- Collect more angles
 - MAD-box
 - Flat-cone
 - MACS

TAS v.s. TOF \Rightarrow Multi-TAS

25

Energy

TAS

- Focus on one Point
- Flexible
- Already "optimal" (IN8, IN20..)

Multi-TAS

- a line in momentumenergy-space
- More Neutrons
 recorded than TAS
- More flexible than TOF
- Parametric studies

TOF

- 2-3D manifold
- Overwiew sees "everything"
- Less flexible
- Still improving (6+ today)

 (π,π)

 \mathcal{L}_{2D}

Continuous angles

- Geometry of many analysers and detectors?
 - Dead angles
 - Solution: scatter vertically

Work-plan

- Invite more interessants
- Material choices:
 - Crystal fibres
 - Stacked crystals: PG or Si/Ge?
- Geometries:

- Compromises: coverage, resolution, bck, size & price: Monte Carlo
- Prototyping:
 - Reflectivities, absorption, background
- Adaptation of design to specific instrument characteristics
- Data-analysis / experiment planning tools