

Focusing SANS using advanced reflective optics

S. Désert & P. Permingeat

<u>Issues</u>

- Intensity enhancement
 use of the whole guide surface
 increased usefull divergence
- No wavelength dependance
 focusing by reflection
- Design flexibility

Principle

Parameters

- Overall spectrometer length
- Dimension of guide exit
- Minimum λ to handle determines critical angle of the parabolic SM (high λ → compact spectrometer)
- m of the SM determines critical angle reflection coefficient

Collimation

• Collimation made by slits located at the common focal point:

• Slit dimension determines the beam stop size $\rightarrow \theta_{\min} \rightarrow Q_{\min}$

Design parameters

• Gain factor (γ) : ratio of elliptic and parabolic focal lengthes

• When γ increases, the usefull divergence at the guide exit increases:

Intensity increases

Sample size increases

3D View (2 reflections)

<u>3D View (4 reflections)</u>

Comparison with pinhole SANS

- Gain (towards pinhole SANS) increases when Q_{min} decreases (gain ~ Q_{min}^2)
- Gain much larger than multibeam technique
- Flux gain = constant (4 here) in case the sample size is imposed

Summary

New device for focusing neutrons - Application to SANS

Flexible design to optimize constraints (guide exit, overall length, ...)

Large intensity gain (reflection efficiency 90% @ m=3) 2 reflections, T=80% 4 reflections, T=65%

Increased background - diffuse scattering from SM To be studied

1st year project

- Find parameters
 - \rightarrow λ_{min}, largest γ, f, spatial filters
- Follow SM quality for noise reduction
 - ➔ Manufacturers
 - ➔ McStas ?
- Build a reduced scale prototype
 - → along 1D
 - ➔ 4 reflections principle
- Test prototype
 - ➔ Signal/Noise ratio

<u>3D View (4 reflections)</u>

<u>3D View (2 reflections)</u>

Some results

- Sample size increases with the focal length (and guide dimension)
- There is an optimum focal length for the intensity

Some results

- Sample size increases ~ linearily with γ
- Intensity (around $f_{\text{opt}})$ increases ~ linearily with γ

→ Flux is constant

Equations

