

Focusing SANS using advanced reflective optics

S. Désert \& P. Permingeat

Issues

- Intensity enhancement use of the whole guide surface increased usefull divergence
- No wavelength dependance focusing by reflection
- Design flexibility

Principle

Parabola

Parameters

- Overall spectrometer length
- Dimension of guide exit
- Minimum λ to handle
determines critical angle of the parabolic SM (high $\lambda \rightarrow$ compact spectrometer)
- m of the SM
determines critical angle reflection coefficient
- $\mathrm{Q}_{\text {min }}$

Collimation

- Collimation made by slits located at the common focal point:

Design parameters

- Gain factor (γ) : ratio of elliptic and parabolic focal lengthes

-When γ increases, the usefull divergence at the guide exit increases:
Intensity increases
\rightarrow Flux $=$ Constant
Sample size increases

3D View (2 reflections)

3D View (4 reflections)

Comparison with pinhole SANS

- Gain (towards pinhole SANS) increases when $Q_{\text {min }}$ decreases (gain $\sim Q_{\min }{ }^{2}$)
- Gain much larger than multibeam technique
- Flux gain = constant (4 here) in case the sample size is imposed

Summary

New device for focusing neutrons - Application to SANS
(e) Achromatic
(3) Flexible design to optimize constraints
(guide exit, overall length, ...)
(3) Large intensity gain
(reflection efficiency 90\% @ m=3)
2 reflections, $\mathrm{T}=80 \%$
4 reflections, $\mathrm{T}=65 \%$
(1.) Increased background - diffuse scattering from SM

To be studied

1st year project

- Find parameters
$\rightarrow \lambda_{\text {min }}$, largest γ, f, spatial filters
- Follow SM quality for noise reduction
\rightarrow Manufacturers
\rightarrow McStas ?
- Build a reduced scale prototype
\rightarrow along 1D
$\rightarrow 4$ reflections principle
- Test prototype
\rightarrow Signal/Noise ratio

3D View (4 reflections)

3D View (2 reflections)

Some results

- Sample size increases with the focal length (and guide dimension)
- There is an optimum focal length for the intensity

Some results

- Sample size increases \sim linearily with γ
- Intensity (around $f_{\text {opt }}$) increases ~ linearily with γ
\rightarrow Flux is constant

Equations

Parabolic $S M$
$\tan 2 \theta_{0}=\frac{y_{P 2}}{x_{P 2}-x_{F}}$
$y_{P 2}^{2}=4 f\left(x_{F}+f-x_{P 2}\right)$
$x_{F}=\frac{\left(y_{P 1}^{2}-4 f^{2}\right)}{4 f}$
$y_{P 1}^{2}=\left(y_{P 2}+w\right)^{2}$
${ }^{\prime} P_{1}$

