

Monte Carlo simulations for focusing elliptical guides

R. Valicu^a, P. Böni^b,

^aForschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, D-85747 Garching, Germany ^bPhysik-Department E21, Technische Universität München, D-85748 Garching, Germany

Overview

- Motivation and goals
- Guide parameters at PGAA
- Test setup at PGAA
- First results
- Next steps and conclusions
- References

Motivation and goals

- To significantly increase the neutron flux
- Well defined beam characteristics
- Gain factor in intensity of over 20 compared to straight guides
- To improve the focusing of the neutron beam at the existing beamline PGAA (FRM II) by prolongation of the existing elliptic guide

Guide parameters at PGAA

Focusing guide at PGAA: Composed of 2 elliptic sections (coating m = 3):

- Section A: *L* = 5.80 m
- Section B: *L* = 1.09 m
- Performance:

Position	Neutron flux	Beam profile (HxW)		A 81
End of the guide:	6.0·10 ⁹ n/cm ² s	$28 \mathrm{x} 62 \mathrm{mm}^2$	measured	C.C.
Messposition 1 (30-35 cm from the end of the guide):	7.3·10 ⁹ n/cm ² s	14 x 38 mm ²	expected	20
Messposition 2 (9-10 cm from the end of the guide):	2.0·10 ¹⁰ n/cm ² s	$4 \mathrm{x} 11 \mathrm{mm}^2$	expected	

Table 1: Performance of existing elliptic guide at PGAA

Fig. 1: Neutron guide at PGAA

Test setup at PGAA

The initial simulations were made with a length for the additional guide of L = 75 mm and supermirror coatings m = 4, 5 and 6. In a next step, L was varied. The maximum gain is obtained for L = 80 mm.

Fig.2 Gain factor over the length of the additional guide

First Results

Fig.3 Neutron flux in focal point without the prolongation guide

Fig.4 Neutron flux in the focal point for m=5 coating of the prolongation guide Fig.5 Neutron flux in the focal point for m=6 coating of the prolongation guide

Next steps and conclusions

- With the *m* value and the length of the guide fixed, a beam profile of 3×8 mm² is obtained after adding the third elliptic part. To reduce the beam further, apertures shall be introduced.
- We expect to observe a dramatic decrease in the size of the beam in the focal point after introducing an aperture: $30 \ \mu m < D < 0.2 \ mm$. The results open wide possibilities in the field of neutron imaging and radiography as well as in probing very small samples.
- Next steps will be to build the third elliptic guide section and to introduce the aperture in order to compare the simulations with the test results obtained.

References

1. P. Böni, *New Concepts for Neutron Instrumentation*, Nucl. Instr. Meth. A **586** (2008) 1-8.

2. S. Mühlbauer, M. Stadlbauer, P. Böni, C. Schanzer, J. Stahn, U. Filges, *Performance of an elliptical tapered neutron guide*, Physica B**385-386** (2006) 1247-1249.

3. http://www.mcstas.com/documentation/manual/mcstas-1.12components.pdf.

4. C. Schanzer, P. Böni, U. Filges, T. Hils, *Advanced geometries for ballistic neutron guides*, Nucl. Instr. Meth. A **529** (2004) 63–68.