

High intensity white beam specular reflectometers

Frédéric Ott

Laboratoire Léon Brillouin CEA/CNRS Centre d'Etudes de Saclay 91191 Gif sur Yvette FRANCE

Increase the luminosity of reflectometers

- Gain in counting rates of 1-2 orders of magnitude in specular reflectivity
- Reflectivity curves in minutes instead of hours
- What for?
 - Very fast measurements
 - Kinetic studies
 - Systematic studies versus external parameters
 - Temperature, pressure, magnetic field, partial vapor pressure
 - Measurements on very small samples
 - But NOT for measurements at very low R (<10⁻⁶)

- Objective: gain in flux (1-2 orders of magnitude)
- *How :* use the « whole » real space

- Possibilities:
 - Spin space encoding (SERGIS)
 - Time space encoding (TILTOF)
 - Energy space encoding (PRISMs, EASYREF, GRADTOF, REFOCUS)

Get rid of the chopper & the monok

ENERGY – SPACE encoding

Energy analysis AFTER the sample

R. Cubitt et al, NIM A 558 (2006) 547-550.

F. Ott et al, Physica B 397 (2007) 153-155.

EASYREF

F. Ott et al, NIM A **584** (2008) 401-405

R. Gahler Phys Rev D 25 2887 (1982) R. Cubitt NIM A 558 547- (2006)

Refraction using prisms (R. Cubitt, ILL)

- Cost:
 - k€3 MgF₂ flat prism
- Limitation
 - Rather weak refraction effects for short wavelengths
 - MgF₂ is already the best possible crystal (single crystal; low absorption)
 - High resolution detector or long flight path (10m)

Energy analysis using diffractive optics EASYREF

- TOF wavelength bandwidth: 0.2 2.5 nm
- Wavelength resolution: BW = 7%
- $\lambda_n = (1-BW)^n \lambda_{max}$
- 35 points measured at once

- Sample of 40mm
- Incidence angle 2.5°
- Divergence 0.06°

- 4θ_c monoks
- Detector set at 1500mm after the device

Similar proposals using diffractive optics

- C.F. Majkrzak, Physica B **173** (1991) 75-88.
- Graphite Si crystals (K. Andersen H. Ronnov ILL EPFL)
- CANDOR @ NIST

Chromatic Analysis Neutron Diffractometer Or Reflectometer

CANDOR

Hybrid setups

Combine Energy Analysis with a high speed chopper (200Hz)

- Typical TOF reflectometer (EROS D17): λ from 0.2 to 3 nm,
 - New disk chopper for a band between 0.2 to 0.5nm
 - = gain of a factor 6 in flux for the short λ
 - Long λ (0.6 3nm) are analyzed using one of the energy analysis device.

No compromise in resolution

Energy – Space encoding before the sample REFOCUS

Use of advanced reflective optical components

10 High *m* monochromators (without harmonics, m>3) 0.1 J. Padiyath et al, APL 89 (2006) reflectivity 0.01 0.001 Graded mirrors 0.0001 0.00001 0.5 0 1.5 25 35 Theta (°)

(M. Schneider, J. Stahn, P. Böni, to be published)

Elliptical mirrors, C. Schanzer et al, NIMA 529 (2004)

- F. Ott and A. Menelle, NIM A **586** (2008) 23–30.
- Key technologies
 - High m, without harmonics ML monochromators (m>3)
 - Graded mirrors
 - Elliptical curved mirror

λ vs Position on detector

Slit 1: 1-4 mm Sample: 100mm $\theta_i = 6^\circ$

Real reflectivity in Mode B

Laboratoire

Short WL

sample

- Equivalent to $\theta/2\theta$ operation mode
- Constant Q operation (almost)
 - Low resolution detector is sufficient
 - Constitution off-specular scattering
 - C Limited spectral purity is sufficient
- 8 Sample scan is required

- Equivalent to TOF operation mode
- Output to the second second
 - Ultra fast measurements
 - Stroboscopic measurements
- Earge, high resolution (2mm), fast detector is required
- Bigher sensitivity to spectral purity and to offspecular scattering

Problems with graded mirrors

- The resolution is not constant along the length of a graded mirror monochromator
- Not a problem for low resolution measurements

Diffuse scattering from mirrors

- Not a problem,
- can be filtered out at the sample position with a slit
- Incoherent scattering from sample
 - Integrated on the detector (no collimation after the sample)
 - Problem because of white beam illumination

- SPLIT the functions to avoid graded mirror:
 - monochromatization
 - Focussing
- Technologically less demanding

Multiple Angle Grazing Incidence K (MAGIK) reflectometer

The slit is narrow along z to fix θ, but **broad along y** to gain Intensity. For a **calibration sample** having uniform unit reflectivity, R = 1, the contribution, M, of each beam to the signal at the detector pixel for each tagging condition must be measured separately.

 $R(\alpha_{ij}, \theta_F, \alpha_F)$ is the reflectivity of the sample arising from an incoming beam at angle α_{ij} and measured at the detector pixel at θ_F , α_F . Call it R_j . We want to measure all these R_j . But since the resulting signal contains the SUM of terms arising from each incident beam, the terms need to be separated. By using a number of tagging conditions and measuring once for each condition, this separation can be accomplished.

Comparisons

Methods	Refraction	EASYREF	GRADTOF	SELENE	REFOCUS
Complexity	simple	simple	average	average	average
Data acquisition	simple	simple	average	average	average
Data processing	simple	simple	simple	average	average
Efficiency	high	high	Medium (x6)	high	high
Cost	€10000	€40000	€100000	€50000	€50000

- Note that these techniques are efficient only on <u>continuous sources</u>
- Presently, building of spallation sources :
 - SNS, JPARC, ISIS II, ESS (?)
- Continuous sources still have a long time life

- Lots of new design proposals for high flux reflectometers
 - More efficient use of the available neutrons
 - Gains in flux ~ 50-100
- Open questions (to be tested experimentally)
 - Off-specular scattering (OK)
 - Incoherent scattering (?)
 - Background noise

EN STOCK

White beam in the G3bis bender (EROS)

Present ML monochromators are not perfect

Si absorption: (experimental measurement)

• $A(\lambda)$ (%/mm) = 0.1 + 0.4 λ (nm)

Reflectivity in Mode A

EN STOCK

- Gain in flux of 20 50 wrt existing reflectometers on continuous sources
- General purpose set-up
 - Small / large / magnetic samples
 - No compromise on resolution
 - Operation very close to existing reflectometers
 - Possibility to study liquid surfaces
- Set-up is simple (no complex mechanics)
- Technology is already available
- Cheap
- Possible to implement on existing reflectometers

Implementation

- <u>Detector</u>.
 - size of 300mm
 - resolution 2-3 mm
 - very high counting rate
 - such detectors do exist,
- Focussing ellipse.
 - 1D, 3000mm long.
 - Such optical elements have already been built at a reduced scale of 1/3.
- Fabrication of graded monochromator.
 - The technology exists and has been demonstrated.
- <u>Multilayer monochromators.</u>
 - 2 issues
 - total reflection region.
 - intensity ratio between the diffraction peak and the bottom of the peak is only of the order of 10⁻².

Present design :

3θ_c monochromators ; length 3m

- Doubling the size of the device
 - Doubling of the solid angle
 - Flux multiplied by 2
- Use $4\theta_c$ or $5\theta_c$ monochromators
 - Solid angle can be increased for short wavelengths

- New reflective optics technology + High speed detectors
 new designs of <u>specular</u> neutron reflectometers using all the neutrons in the guides
- Prototypes under construction within NMI3
- PSI (J. Stahn et al)
- HZB (T. Krist et al)
- TUM (P Böni et al)

Se focaliser sur EASYREF

- Problème avec REFOCUS:
 - Graded SM pose un problème de résolution
 - Problème du hors spéculaire dans EASYREF

Faire le calcul! (à partir d'une mesure)

- Problème de l'incohérent et du diffus
- Prendre les tables de la diffusion incohérente
- Récupérer les fichier de diffusion hors spéculaire