

Cryogen-free cryostat with sample changer for fast automatic data collection

J.Peters, MLZ

Motivation

Dead times related to sample environment changes and setup are going to be the limiting factor in sample throughput due to

- increased efficiency of neutron sources and of instruments
- comparatively short measuring periods investigating Soft and Bio Materials

Many experiments are carried out at low temperatures → need of low temperature equipment suitable for rapid and automated sample and temperature change

Basic conditions

- Cryogen-free, temperature 3 K or lower and up well above room temperature.
- Modular setup to allow the mounting of a tail optimised for SANS, Reflectometry, and other neutron instruments from different facilities.
- Tail windows designed in order to apply in-situ light/UV or other external radiation.

Two different approach:

- Samples (and changer mechanics) are pre-cooled to intermediate temperature level e.g. 1st stage cold head temperature level. Place requirement for mechanics and lock (ILL)
- Compact cryostat design with minimized cold mass allowing fast cool down. Samples and robot at RT (FRM II)

Compact cryostat: objectives

- Compact cryostat design (limited space at instrument)
- Fast remote controlled sample change
- Broad temperature range
- Sample storage and robot at RT
- Modular setup
- Top and bottom loader possible (arbitrary)

Compact cryostat: (sample tube) concept study

- Separate sample space and cold head isolation vacuum
- Minimized cold mass
- Remote controlled reload
- Standardised sample holder
- Pin connection for thermal link and thermometry
- Sample in exchange gas via sample container

Compact cryostat: reload mechanics

Compact cryostat

MIS

Feasibility: Heat management

Present status: 3K plate AI-SS sandwich material, nested link

Dewar

Dewar, radiation shield

Top cover, in/outlet

Heat switch

Compact cryostat: problems to be solved

- Efficiency of heat switch
 →Cool down time
 →Temperature
 - Thermal connection of sample
 - \rightarrow Pin connection
 - → Standardised sample cans (orbital laser welding)

Thank you!