

NMI3 - Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy

NMI3/JRA8 MUON-S Working Group Meeting 17.02.2005

High Magnetic Field µSR Project at PSI – *Status Report*

R. Scheuermann

 μ^+ , *E*_{kin} = 4.2 MeV

TF: 90° spin rotation

time resolution: $\delta t \le 300 \text{ ps}$

compact detector system: AMPDs ? (Avalanche Microchannel Photodiodes)

Problems / Challenges

Magnet design: length, field homogeneity & long-term stability

Stray field minimization (spin phase coherence)

Muon phase space / momentum bite

Muon beam collimation

Detector system (fast & compact)

Sample environment (incl. scintillators)

Belle

Magnet Type: Superconducting Helmholtz Field Strength/Orientation: 7.5 T // z Counter acceptance: 4π Experiment types: HTF

http://musr.org/

High-Time

Magnet Type: Superconducting Solenoid Field Strength/Orientation: 7.0 T // z Counter acceptance: 4π Experiment types: HTF

Time resolution: 425 ps

Avalanche Microchannel Photodiodes (AMPDs) collaboration with Z. Sadygov (JINR, Dubna): new generation of AMPDs

sensitive to blue, active area 25×25 mm², rise time « 1ns, ...

 $\Rightarrow \delta t \le 50 \text{ ps}$

Fast-Timing Detector Development - 2

Hybrid Avalanche Photodetector Hamamatsu R7110U-07:

electrostatic focussing lost above 1 kG // axis: decrease of signal amplitude

timing properties (rise time) do not change

Multianode-MCP PMTs BURLE PLANACON™ 85001-501

4 channels – tbt

Multipixel HPD Hamamatsu R9503U-04-M064 8x8 pixels, 16x16 mm² eff. area – tbt ????? (25 kSFr...)

Detector Development

Muon beam profile monitor: A. Stoykov *et al.*

Muon beam profile measurement in center of ALC solenoid:

AMPDs and preamps work fine in 5 T!

NMI3/JRA8, SR35, 17.02.2005

Beam Profile Measurements

NMI3/JRA8, SR35, 17.02.2005

Tests planned 2005

Light collection from scintillator:

MC simulation (V.V. Zhuk 2005, code: NIM A $\underline{374}$ (1996) 335) $\approx 45\%$ of light from $10 \times 0.2 \text{ mm}^2$ face collected in less than 200 ps

fast plastic scintillator BC422:

70% of light lost with standard plexiglass light guides!

PAUL SCHERRER INSTITUT

Tests

Test setup based on BURLE PLANACON 85001-501 MCP PMT

Test setup to study the effect of long light guides on timing properties,

evtl. to be used in RA-05-25

field maps required for simulations:

particle tracking & spin phase evolution

NMI3/JRA8, SR35, 17.02.2005

Oxford Instruments – initial design

10 T cold magnet split (20 mm)

contact only to engineer only via sales manager...

recently restructured: delays and loss of information

initial design (no-cost, completed 13/07/2004, received 09/2004): useless...

OI-2: 'horizontal' dI + solenoid

PAUL SCHERRER INSTITUT

Cryogenics LTD. – 10 T design study (€)

NMI3/JRA8, SR35, 17.02.2005

Particle tracking / simulations with 'real' field maps (split coil + evtl. solenoid)

Short solenoid: minimize length at given homogeneity

Fast Timing: test Multianode MCP-PMT PLANACON™ 85001-501 new AMPDs

Performance of fast plastic scintillators at low T

Detector design and simulations

Full instrument simulation (secondary beamline + spectrometer)