

Position-sensitive detection for spatial resolution and high detector segmentation

T. Shiroka, C. Bucci, R. De Renzi

Dipartimento di Fisica, Università di Parma & INFM, Parma, ITALY

R. Scheuermann, E. Morenzoni

Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institut, Villigen, SWITZERLAND

Motivation for the work

muon

neutron

Question:

nmið

Can we improve the performance of current µSR spectrometry detectors?

Answer:

Yes, if we use state-ofthe-art technology and detector optimisation

Overview

∩mi∃

Limitations of the current µSR detectors

neutron

- New development ideas
- Finding the best alternatives
 - Possible position-sensitive detector (PSD) choices

muon

- Detector simulations
- Conclusions and future work

Limitations of current µSR detectors

muon

Current µSR experiments rely on detectors comprising: scintillators – light guides – photomultipliers

Advantages

- ✓ Fast response
- ✓ High detection efficiency

neutron

- ✓ High flexibility
- ✓ Inexpensive
- ✓ Etc...

nmið

Weaknesses with

- × High magnetic fields
- × Low-energy muons
- × Tiny samples
- **×** Etc...

Limitations of current µSR detectors

muon

- High magnetic fields
- Tiny samples

nmið

- Complex samples
- Low energy muons

- Highly curved positron tracks
- Poor solid angle coverage
- High background
- Origin of positrons
- ➔ Large beam/High background

Examples: H = 2 T => r = 6 cm H = 5 T => r = 2 cm

neutron

JRA 8 – Work Package 1

neutron

Objectives

nmið

Development of position-sensitive detectors (PSD) and electronics readout based on new solid state and integrated technologies

JRA8

Fast timing detector system for high magnetic field and RF spectrometers

muon

Exploration of analogue detection techniques

PSD – New development ideas

muon

neutror

Problem

nmið

- Poor solid angle coverage
- Pile-up effects
- Origin of positrons/backgr.
- High magnetic fields

Proposed solution

JRA8

- \rightarrow Cover almost 4π
- ➔ High detector segment.
- Path reconstruction
- Positron tracking

Position-Sensitive Detectors

Simple position sensitive detector

Software defined pixel geometry

Full positron tracking ?

Desirable PSD features for µSR

muon

JRA8

- High spatial resolution (at least 1 mm or better)
- High positron detection efficiency (> 95%)
- Good time resolution (1 ns or better)

neutron

nmi3

- Good channel granularity (1024 channels or more)
- Possible reconstruction of positron flight path

PSD comparison at a glance

6

nmi∃

Detector technology	Major application	Pros	Cons
Gaseous detectors (Wire, MSGC)	Large volume and high- rate tracking	Rugged, cheap, radiation hard, tailored to exp. needs	Sensitive to magnetic field, limited precision
Solid-state detectors	Vertex detection, high- rate tracking	High precision and good energy resolution	Radiation sensitive (Si), expensive
Scintillating fibre detectors	Vertex detection, high- rate tracking and triggering	Fast, insensitive to magnetic field	Low light yield, critical readout
Visual tracking detectors	Vertex measurem. (outdated)	High track precision	Very slow, dangerous

Peculiarities of decay positrons

muon

neutron

nmið

Stopping power vs. positron energy in silicon and scintillating fibres

Positrons in μ^+ decay:

JRA8

T = 37 ± 11 MeV, much different from particles in colliders (T ~ 1 GeV)
 → large multi. scattering

Behave as minimum ionising particles (MIPs)
 Jow-level signals

Radiation level is low
 very limited damage

http://physics.nist.gov/PhysRefData/

Main features of silicon detectors

muon

Small band gap (1.12 eV) → low e-h pair generation energy (3.6 eV) (ionisation energy in gases ≈ 20 eV)

JRA8

- High density (2.33 g/cm²) → large energy loss/length for ionising particles → thin detectors; small range δ-electrons; precise position measurement
- High mobility of electrons and holes
 relatively fast

neutror

Possibility for building-in electronics in a single device

nmið

Map of silicon PSDs

nmið

6

Strips	Microstrip	Solid-State Detector
Pixel de	etectors	
and the second second		Active Hybrid APS
Passive	Drift chamber	Active Hybrid APS

Possible detector approaches

muon

Conservative (use existing silicon detectors: µ-strips):

- ✓ Well established, low-cost, low-tech, immediate availability, reliable
- ➤ High radiation length (thick), slow electronics front-end, no margin for future improvements, separate front-end

Innovative (use novel technology detectors: DEPFET, MIMOSA):

- Highly pixelated, thinner, faster, low-power, on-chip amplification, low noise and capacity
- Still immature, risky, uncertain, high-cost, not ready available

neutror

nmið

G. Lutz, Semiconductor radiation detectors (Springer, Berlin, 1999)

Beyond silicon – scintillating fibres

muon

Scintillating fibres are appealing for fast tracking:

- ✓ High speed, insensitive to magnetic fields, lower costs and higher flexibility
- ➤ Fair spatial resolution, still limited efficiency, highly complex (for many channels), still in development

1 mm resolution (~ fibre diameter)3 ns timing (e.g. in plastic NE 102)Multi-channel readout

neutron

nmið

R.C. Ruchti, *Annu. Rev. Nucl. Part. Sci.*, **46** (1996) 281

H. Leutz, *Nucl. Instr. and Meth. A* **364** (1995) 422

JRA8

Scintillating fibre – SciFi

Detector simulation aspects

muon

Simulations are crucial for:

neutron

∩mi∃

- Selecting detector type and determine its limits
- Optimising detector geometry and parameters
- They could account for:
 - Deterministic effects e.g. influence of magnetic fields
 - Random effects e.g. multiple scattering events
 - Most suitable simulation codes:
 - SRIM 2000 (muons)
 - PENELOPE, **GEANT4** (positrons)

J.F. Ziegler – www.SRIM.org

JRA8

J. Sempau, et al., *Nucl. Instr. and Meth. B* **132** (1997) 377

S. Agostinelli et al., (Geant4 Collaboration), *Nucl. Instr. and Meth. A* **506** (2003) 250

Some simulation results

muon

neutron

nmi

Angular deviation vs. incident particle energy for e^+ going through Si (100 and 300 µm) and scintillator (1 mm)

Multiple scattering effects:

JRA8

Mean angular deviation is ~ 1.5° and even with ultra-thin Si detectors cannot be reduced below 0.8° !

Is tracking possible ?

- For telescopes 3 cm apart the error is $\Delta x = 1$ mm
- Useless having very small pixels in second layer
- Very high precision is intrinsically impossible

Some simulation results

MUON

∩mi∃

Multiple scattering effects vs. silicon detector thickness for different incident positron energies.

Multiple scattering effects:

JRA8

By **halving** the standard detector thickness (300 µm) the mean polar angle is reduced by ~ 40%

Filtering of high-energy positrons yields only a small improvement (~ 20%)

Efficient detection of positrons

muon

To reduce the effects of multiple scattering one should follow the **vertex detector paradigm**:

JRA8

- Put amplifiers at the end of ladders (separate from detector)
- Minimize mass inside the tracking volume

neutron

nmið

Minimize the distance to the innermost detector

H.F.-W. Sadrozinski. *IEEE Trans. Nucl. Sci*, **48 (**2001) 933

Possible detector layouts

meutron-

nmið

Mixed type detectors successfully used in: NA58, FAROS, etc.

muon

Detector = Silicon devices (position) + Scintillating fibres (timing)

Improved overall performance due to complementary advantages

B. Seitz, *Nucl. Instr. and Meth. A* **535** (2004) 538

JRA8

W. Baldini, et al., *IEEE Trans. Nucl. Sci.*, **48** (2001) 1122

Conclusions and future work

neutron

∩mi∋

Simple position sensitive detection is possible, but full positron tracking is rather challenging

muon

- A mixed type detector (silicon + scintillator) would benefit from its parts' complementary advantages
- Detector simulation is crucial in optimising detector parameters and guiding the building of prototypes

Future work

- Choice and testing of prototypes: assess their position sensitive capabilities and timing in realistic conditions
- New ideas and suggestions are always welcome