

Fast timing detectors for operation in high magnetic fields

A. Stoykov, R. Scheuermann, K. Sedlak

PSI, 30 March 09

A challenge of muon spin rotation experiments in 10T

PMT based scintillation counters:

• in high magnetic fields the time resolution is limited due to attenuation and broadening of the light pulses in the necessary light guides

TF μ SR in high fields \rightarrow no light guides \rightarrow no PMTs

		Potentially promising photosensors				
photosensor parameter	PMT	Avalanche PhotoDiode (APD)	Large Area Avalanche Photodiode (LAAPD)	Hybrid Photo Detector (HPD)	MicroChannel Plate PMT (MCP PMT)	Multipixel Geiger-mode Avalanche PhotoDiode (G-APD)
active area	> 100 mm ²	$\leq 100 \text{ mm}^2$	$\leq 400 \text{ mm}^2$	> 100 mm ²	> 100 mm ²	$\leq 10 \text{mm}^2$
operation voltage	$\sim 2 \ kV$	~ 400 V	~ 1600 V	~ 8 kV	$\sim 2 \ kV$	< 100 V
gain	$10^{5} - 10^{7}$	\leq 500	\leq 2000	$\leq 8 \cdot 10^4$	$10^{5} - 10^{7}$	$10^4 - 10^7$
PDE (%, near UV)	30	*	*	30	15	5 (2003) 30 (2007)
fast response (near UV)	yes	yes	no (drift time)	yes	yes	yes
operation in high fields	<< 1T (typ. 0.3T)	expected (tested ≤10T)	expected (tested ≤5T)	certain orientations	max 2T (certain orient.)	expected (tested ≤5T)
compactness	bulky	compact	compact	bulky	bulky	compact
non-magnetic package	no	yes	yes	no	no	yes
						1.1

* no single phe resolution; $QE \sim 70\%$

acceptable not acceptable good

G-APD – multi-pixel Geiger-mode Avalanche PhotoDiode G-APD = SiPM, MAPD, SSPM, MPPC ...

MRS APD [A. Akindinov, Beaune05]

$$Q_{i} = C_{i} \cdot (U - U_{0})$$
$$M = Q_{i} / e$$
$$Q = \sum Q_{i}$$

G-APD vs. PMT

Advantages:

- insensitive to magnetic field;
- compact, robust;
- low operation voltage (20 150 V)

Disadvantages:

• small active area $(1 - 10 \text{ mm}^2)$

larger area \rightarrow G-APD arrays

• Active area $(1 - 10 \text{ mm}^2)$

G-APD: parameters

- Number of cells \rightarrow Dynamic range (100 10000 mm⁻²)
- **<u>Photon Detection Efficiency</u>**: *PDE* (λ , *U*) (\leq 35% at 400 nm)
- Gain: M (10⁴-10⁷)
- <u>One-photon time resolution</u>: $\sigma_{1ph}(\lambda, U) ~(\geq 100 \text{ ps at } 400 \text{ nm})$
- Excess noise factor: $F = 1 + \sigma^2(M) / \langle M \rangle^2$
- Inter-pixel cross-talk: $\alpha(M)$
- Operating voltage: U (15 V 150 V)
- Dark current: I_0 (T, U) (10 nA 100 μ A/mm² at RT)
- Dark counts: $N_0(T, U)$ (0.1 10 MHz/mm² at RT)
- Cell recovery time (10 1000 ns)
- Temperature coefficient of gain: $(\Delta M / M) / T (0.1 10 \% / C)$
- Radiation hardness

Timing with plastic scintillators: G-APDs vs. PMTs

time resolution σ vs. detected energy E

	PMT
$\sigma E^{0.5} = 19 \text{ ps} \cdot \text{MeV}^{0.5}$	best time resolution (<u>NE111</u> + <u>XP2020UR-M</u>) [M.Moszynski, NIMA 337 (1993) 154]
	G-APD
σ	(E) – to be measured

<u>MAR-6 amplifier</u> ($R_{\text{bias}} = 1$ k, $C_{\text{in}} = 56$ pF, $R_{\text{att}} = 1$ k) : Gain = 13, bw ≈ 600 MHz

C1

°°Sr ຈ

C2

Time Resolution of C2 vs. Amplitude (win1 – fixed, win2 – scan)

$\sigma(E): A \rightarrow N_{\text{phe}} \rightarrow E$

1. Correct for non-linearity of the amplifier: $A \rightarrow A_{\text{lin}}$

2. Calculate number of firing cells: $N_{cell} = A_{lin} / A_{1c}$

- 3. Calculate the number of photoelectrons: $N_{\text{phe}} = (m / \alpha) \ln (1 N_{\text{cell}} / m)$ m = 2400 (cells per 6 mm²); $\alpha = A_{1e} / A_{1c} = 1.12$
- 4. Establish the correspondence between N_{phe} and E: $N_{\text{phe}} = 2270 E$ $n (N_{\text{phe}})$ – experimental data (C2, ⁹⁰Sr reversed) after the corrections; $n (E_{\text{sim}})$ – spectrum of deposited energies simulated in GEANT4.

 $\sigma(E)$: results BC422 + MPPC 33-050 2

2270 phe/MeV *PDE* ≥ 27%

Number of Photoelectrons

<u>PMT</u>: 19 ps · MeV^{0.5}

best time resolution [M.Moszynski, NIMA 337 (1993) 154]. NE111 (d25 x 10 mm, Teflon reflector) + XP2020UR-M **BC422 ≡ NE111 fastest plastic** 8400 phe/MeV, 370 nm

Muon and positron counters for 10T spectrometer (prototypes)

- (1) Positron counter: EJ-232 10x10x5mm;
- (2) Muon counter: **EJ-232** Ø8x0.3mm in 10x10x2mm frame (BC-800);
- (3) two G-APDs type Hamamatsu MPPC S10362-33-050 (3x3 mm²);
- (4) scintillator + photosensor in a light tight box;
- (5) broad band amplifier (gain ~ 13 , bw ~ 600 MHz).

Test setup:

the muon (positron) counters are assembled on a supporting plate inserted into the warm bore of a 5T solenoid. The muon (positron) beam momentum is 28 MeV/c.

Detection of muons (M1) and positrons (P1) in 4.8 T

Signal rise/fall times
M1 1.24 / 7.2 ns
P1 1.48 / 8.0 ns

Muon and positron counters for 10T spectrometer (prototypes)

Time resolution M1-M2 (P1-P2) 400 H = 4.8T200-M1 -- M2 σ = 60 ps Counts 200 <u>P1 -- P2</u> $\sigma = 65 \text{ ps}$ ^{0.2} ∆t (ns) 0.0 -0.2 Per counter (M/P) **46 ps** Spectrometer (M + P) 65 ps

P1: $\sigma E^{0.5} \approx 25 \text{ ps·MeV}^{0.5}$

detected energy $E \approx 0.3$ MeV

E = (actual deposited energy) *

(ratio of photodetector to scint. area)

High rate capabilities:

70% signal amplitude at 10 MHz count rate. Further increase is possible at the expense of time resolution.

H = 4.8 T

Summary

- combined with plastic scintillators G-APDs provide time resolution comparable to that achieved with PMTs: $\sigma E^{0.5} = 18 \text{ ps} \cdot \text{MeV}^{0.5}$
- in contrast to PMTs, the performance of fast-timing G-APD based detectors extends to high magnetic fields
- the use G-APD based detectors in μ SR will allow further extending the range of magnetic fields accessible for muon spin rotation studies

Additional slides ...

$\sigma(E)$: some more results ...

