
Report on current software and practices (task 1)

NMI-3 Workpackage 6 FP7/NMI3-II project number 283883
March 22nd, 2013 - R. Leal and E. Farhi (with input from members of the

workpackage)

A Software for neutron data analysis...1
A.1 Software development status..2
A.2 Software OS and Installation...2
A.3 Software programming features...3
A.4 Usability and Graphical User Interfaces..5
A.5 Data formats...6

B Practices of the software developers..6
B.1 Coding and Hosting..7
B.2 Testing..8
B.3 Documentation...8
B.4 Code reuse and duplication..9
B.5 Summary of recommendations...10

C Conclusion..11

Abstract

In this report, we have reviewed a selection of data treatment software for neutron scattering
experiments. The practices used to develop and maintain the software are also analysed in order to
define a set of recommendations to be used in further projects, including the development and
evaluation of European prototype software which is the main task (3) of this workpackage . This
report fulfils Task 1 of the work-package and aspects of Task 2.

The criteria used for the software review are Deployment / Installation, Usability, Functionality,
Maintenance and Expandability. The criteria used for the software practices are related to version
control, points of failure, testing, documentation, and code duplication.

FP7/NMI3-II WP6 – page 1/11

A Software for neutron data analysis

The neutron scattering software selected for this analysis was those distributed in the ready to run
LiveDVD [http://nmi3.eu/about-nmi3/other-collaborations/data-analysis-standards.html], as well as
the qtiKWS SANS package. See Table 1 for the list of software reviewed.

We have chosen to group the scientific software in the following categories :

1. Structure
1. Powder
2. Large scale structures (SANS)
3. Single-crystal

2. Spectroscopy
1. Time-of-flight
2. Triple-axis spectrometer
3. Muon

3. Reflectometry
4. Backscattering
5. Spin-echo

Table 2 classifies the software according to the categories above.

In addition to grouping the reviewed software according to the type of beamlines/science it has been
applied to, the software may also be categorized according to whether it has been applied to
simulation, reduction or analysis. However, scientists in different areas of science and, even within
the same area of science, associate different meanings to such categories. Here is what we mean by
these, in relation to software for neutron scattering and muon spectroscopy:

• Simulation: Software which simulates data from e.g. a virtual instrument or a material
model (e.g. molecular dynamics).

• Reduction: Software that takes raw data collected on a beamline and removes
instrument/detector specific artefacts from the data, including detector efficiencies variations
over a detector bank, sample can scattering etc. This category mainly includes mathematical
operations and variable changes e.g. from scattering angle to momentum transfer.

• Analysis: Software which takes data collected at a beamline, raw or processed, and infer
some physical quantities from the data which are dependent on the sample used for the
experiment. This category often implies a fit of a model onto the data set, and integrated
quantities.

A.1 Software development status

The Table 3A and table 3B illustrate the overall status of the tested software. A sizeable fraction of
the projects is not active any longer, others are merely active for bug-fixes and just a few appear to
be actively developed (e.g. Mantid, Sasfit/Sasview, McStas, iFit, LAMP, FullProf suite, Vitess).
Mantid is to our knowledge the only one that involves a large team of developers of about fifteen
full-time active software engineers and programmers.

A.2 Software OS and Installation

All the software reviewed in this report were tested under Linux Ubuntu 12.04 operating system –
the same operating system present on the live CD available on the NMI3 website. According to the

FP7/NMI3-II WP6 – page 2/11

web sites where those applications can be downloaded, all the software can run in the three
principal operating systems (Windows, Mac OS X and Linux). However, for Linux and according
to our tests, not all binary files can be executable out of the box. Normally due to back compatibility
issues, the already compiled software written in C++ or Fortran may have issues with binary shared
libraries (i.e. libstdc++ and libgfortran).

This problem is actually present in any modern Linux version. It arises when users try to run a
legacy program that was compiled against an old shared library expected to be part of the operating
system (in an older Linux version), usually, libstdc++ or libgfortran. This can usually be fixed by
recompiling the software from the source (when it is available). Having to compile from source
makes the deployment of software harder, particularly for non-expert users.
Another issue, that the inexperienced users may face under Linux and Mac OS X, is the amount of
extra libraries required for some programs. Windows packages also suffer from this dependency
issue, to a lesser extent, by relying on DLL files which may be system dependent. The only practical
solution for developers to overcome this issue is either to reduce the number of dependencies or
bundle the software with all the necessary dependencies. The latter may be impracticable due to the
size of some external libraries.

A few software distribute the Linux version as RPM or/and DEB packages. Those packages are
usually capable of calculating dependencies and fetch transparently the necessary libraries from the
internet before installation. However, these packages are often Linux version dependent, and not all
versions are supported by the developers.

Bundled software, such as LAMP, Grasp or iFit, are distributed in a single package including all
external dependencies. LAMP for example, has a live update feature, which fetches the last version
from the internet and updates the program transparently for the users.

A.3 Software programming features

Several programming languages and libraries are present in this study. As expected the majority of
the legacy programs are written in procedural languages such as Fortran. Not only in the context of
this study, but in general, software that started to be developed in the 70-80s, are mostly Fortran
based. Some active software packages are still developed in Fortran (e.g. CrysFML library and
FullProf Suite).

Some of the reviewed software is still coded in procedural programming (PP) languages such as C
and Fortran. Object Oriented Programming (OOP) can be advantageous over PP as both data and
functions are wrapped into clear modular entities (objects). Moreover, properly structured OOP
code is easy to maintain and modify as new functionalities can be created (extended) with small
differences to existing ones. The benefits of OOP can be summarised as: abstraction, encapsulation,
modularity, polymorphism, and inheritance. We should however point out that an equally properly
structure PP software can be as effective as its OOP counterpart, and can also be made extendible. It
all depends on the developer practices.

A great portion of the reviewed code started to be developed a few decades ago, to facilitate and
automate certain simple tasks. Due to the continuous requirements for new features, these programs
have grown on the same basis. Although the presence of this legacy code (robust code validated by
decades of usage and debugging) does not represent a problem, still developing new functionalities
upon this paradigm at present can be seen as unnecessary effort and an increased additional
complexity. It may then be much more effective to use the existing legacy software as external
commands or libraries within modern environments if it is indeed possible to decompose the legacy
software into usable pieces in this way.

FP7/NMI3-II WP6 – page 3/11

There are still ongoing development in procedural languages (e.g. Sasfit, McStas, FullProf Suite,
LAMP, Grasp, Vitess), which shows that a procedural based project is not incompatible with a long
life-time, when properly structured. The developers of these packages often organise the software in
folders to keep the functionalities sorted.

Proprietary frameworks are also present in this report. IDL was a platform of choice in the 90s for
scientific development. LAMP and DAVE are two programs that use that language. The Matlab
language is also used, as two recent projects are based on this platform (iFit and Grasp). These
software can be run without purchasing a Matlab/IDL licence, but further development requires a
licence to be purchased. On one hand, rather high inherent costs can prevent some software
developers from contributing to the code, but on the other hand the effective development cost can
be significantly reduced by using such a high level languages. In this context, LAMP has a
community of user-developers both within ILL and at other facilities (e.g. HZB-Berlin and ANSTO
Australia). The use of iFit is growing among more experienced users accustomed to the Matlab
platform.

Java code is less commonly used in the neutron scattering and muon spectroscopy scientific
environment, whereas it is actually one of the most used languages along with JavaScript, Ruby,
Python, PHP, C, C++ (source: https://github.com/languages). In this study, only the ISAW platform
and the triple-axis instrument simulator vTAS were implemented in Java. The ISAW developers
added the Jython scripting language support to facilitate the customisation of ISAW at other
laboratories. Jython has the same syntax as python, however it does not provide support for other
python packages, such as the popular Numpy or Scipy.

Python tends to be indeed the favourite programming language among scientists for recent software
(e.g. GSAS-II, GenX and many others not covered in this report). The simplicity of Python
programming allied to scientific packages (e.g. Scipy, Matplotlib, which mimic many features of
proprietary packages such as Matlab) has made python scripting very popular. A great effort is
being devoted to port scientific packages to Python (RPy for the R Project for Statistical
Computing, SymPy for symbolic mathematics, Biopython for biological computation, etc.).

However, Python as an interpreted language usually performs slower than compiled languages (e.g.
Fortran, C or C++). It is generally accepted that Python however performs faster for prototyping.
Some packages compiled in, usually, C++ and C (e.g. numpy) and wrapped in python, can help
improve performance when used to store and manipulate large datasets. In the neutron scattering
and muon spectroscopy community, Sasview, PDFfit and Mantid have followed this approach, that
is develop the core infrastructure in C++ and implement Python bindings to allow users/scientists to
contribute and write their own scripts in Python. In Mantid, some of the components, such as GUIs
and algorithms, are indeed written in Python.

The Frida software has been developed in C++ and has recently migrated to the most recent version
of the standard of the C++ programming language (C++11). Although this might create some issues
with old version of GCC, C++11 introduces new features to facilitate the software development. We
believe that the C++/Python combination might be wide spread in the coming years.

Mantid follows an object-oriented design. The Mantid initial design was inspired by the GAUDI
(http://proj-gaudi.web.cern.ch/proj-gaudi/) platform at the LHC, Geneva. Mantid relies on a number
of dependencies within which Boost, POCO, and OpenCascade. Several “Design Patterns” are
implemented (Abstract Factory, Proxy, Command), following the GOF book “Design Patterns:
Elements of Reusable Object-Oriented Software”. The Template definition and specialisation
(Abstract Factories and Singletons) is also observable within the main components. Even though the

FP7/NMI3-II WP6 – page 4/11

Mantid core design is fixed (Algorithms, Geometry, Workspaces, Data Services), the
implementation is continuously evolving after reviews and new use cases requests. Actually, this
leads to a complex and rich object hierarchy heavily relying on inheritance. Composition may have
been a better option in some places to reduce the object hierarchy rigidity as suggested in the GOF
book: "Favor object composition over class inheritance".

These considerations are in fact highly related to computer technology history. In the end, the initial
design of a package determines most of the usability and life-time of the project (that is
maintenance costs). The use of object-oriented languages can help in this essential step, but a clever
procedural language design can be as effective. However, simple solutions, which reduce the role of
object classes and therefore dependencies, should always be preferred. To determine a proper design
choice, it may be appropriate to code a few prototypes before starting a larger implementation,
especially as the core design of a project can hardly be changed during the project life-time (except
in the early stages).

A.4 Usability and Graphical User Interfaces

The usability of a software is its raison d'être. For neutron and muon facilities, this resides in the
scientific content. A rich-featured software which cannot be used immediately by an untrained non-
expert user can be seen as a failure, whatever be its internal coding architecture. It is thus an
absolute requirement to clearly expose software functionalities in terms of science, with details of
the data processing steps in order to convince scientists. One common pitfall found in some projects
is the assumption that most users share the same degree of knowledge as the developer for whom
everything is simple, especially when the development team is too heavily focused on internal
programming details. To avoid it, software users must be involved at all stages of the software
design and coding.

A great part of the tested software provide a graphical user interface (GUI). Exceptions are Frida,
PDFfit, iFit and GSAS. The latter has no GUI, but a graphical user interface (EXPGUI) is available
as a separate program. LAMP presents several graphical user interfaces providing normal and
expert modes, as well as a command line. Mantid also provides a set of dedicated simplified GUI's,
in addition to a more complex user interface, and an underlying framework, which is partly exposed
through a Python command line, allowing users to load and process data through a Python console,
useful for expert-users. iFit provides a command prompt, as well as a plotting infrastructure, but no
muon/neutron scattering dedicated user interface.

Java programs use the Java native Swing library for interface development. The programs built
under proprietary software use the native GUI system (Matlab and IDL use Java widgets). Some
older interfaces are coded in TK (either through TCL or Perl). The FullProf suite uses a commercial
platform called Winteracter. Newer GUIs have been implemented in the Python library wxPython
(Sasview, PDFGui, GenX, GSAS-II).

Despite the popularity of Qt in the IT community, only Mantid and QtiKWS feature a GUI based on
this library. The Qt toolkit is a cross-platform application framework mainly for graphical user
interface. It is natively built in C++ but provides bindings for other languages, including Python. To
the authors knowledge, this library is very powerful but has a steep learning curve, making
wxPython an attractive alternative for scientific software developers.

Almost all of the tested software possesses plotting facilities. Those based in Python often use
matplotlib (GenX, Sasview, GSAS-II). Frida for example uses Gnuplot. Sasfit uses TCL/TK blt tool
kit. Java, Matlab and IDL-based software (Grasp, Mfit, iFit) use Java native plotting libraries.
MantidPlot and QtiKWS were built as part of QtiPlot and use its integrated library for plotting.

FP7/NMI3-II WP6 – page 5/11

Mantid also links to Vates (a customised version of Paraview) for 3D visualisation. McStas supports
a variety of plotters and user interfaces, using e.g. Python matplotlib and chaco, perl/PGPLOT,
Matlab, Gnuplot, VRML/X3D. This solution ensures that whatever be the installation configuration,
at least one interface/plotter is ensured to be functional.

It is worth noting that LAMP has a server side application running at the http://barns. ill.fr website.
It exposes remotely the main functionalities of the software through an HTML interface. To our
knowledge, in addition to LAMP, only McStas and vTAS provide a web interface. The Mantid team
also starts to consider a rich internet application for the near future. This interface will be more
limited than the current one (for security issues, no python scripting interface should be available).

A.5 Data formats

All reviewed software start by importing data sets from neutron and muon facilities. However, as
there is no standard format for storing data, each software has implemented loaders for the formats
related to the facility where the software is developed, as well as an additional list of formats related
to the software functionalities. The most simple data format, which is supported by all software, is
the column-based text format.

The increasing adoption of the NeXus format helps but does not solve the sparsity and incoherence
of data formats, as it is intrinsically a specification onto an HDF container. There is no guaranty that
two NeXus files for similar instruments in different facilities (or even in the same) will have the
same structure.

A sensible solution is to make sure that the interpretation of the loaded data set within codes is
tolerant enough to adapt to variations around given templates. The NeXus file specification helps by
taking a significant step towards self-defining data files.

The number of exported data formats is usually smaller than the imported ones, and software often
define their own specific formats which extend the already long list.

B Practices of the software developers

The science we acquire today is a continuation of what has been measured and processed in the last
50 years, with much simpler means in computing than today. Only the size of the data sets, not their
signification, has changed as instruments have gained new technologies: we still measure materials
structure and dynamics, in real and reciprocal space, time, energy, … Only the methodology and
development tools have changed. As opposed to the software built by software engineers, scientific
software is simply a means to an end rather than the ultimate aim. Such software is used as a tool to
progress in research. Also, as stated by Killcoyne and Boyle [Comput. Sci. Eng. 11 (2009) 20] the
scientific software is usually very specialised for a particular topic and is rarely extensible or
interoperable.

For scientists, requirements are emerging and constantly evolving. It may then be difficult for
software engineers to continuously capture requirements and design a robust software solution to be
used by scientists. As a consequence, scientific software often lack clear requirements, architecture
design and documentation, which is mandatory in any commercial IT product. However, building
scientific software based on standards and common enterprise architectures does not guarantee
alone a successful outcome. For instance the DANSE project produced valuable software (Sasview,
PDFgui) but did not fully complete the initial design goals.

Large scientific software projects typically take too long to develop and suffer from poor adoption.
Regardless of the size of a project, producing useful software at an early stage of the project is

FP7/NMI3-II WP6 – page 6/11

important. Large scientific software projects necessarily take longer to develop and will suffer from
poor adoption if functionality cannot be released periodically and from an early stage in the project.

Mantid appears to be the closest to an enterprise software solution. The project has gained from the
expertise of a specialised scientific software consultancy company both at a project management
level and coding level. The coding team is based in the UK and the US and new features are
released on a regular basis, according to Agile development principles.

Scientific software of any size can have maintenance issues, which are a consequence of the
conceptual design and project size. Unit tests do not reduce the maintenance but only allow to
measure its volume.

B.1 Coding and Hosting

Good practices start to emerge. The great majority of the software analysed is hosted by code
repositories (SVN, Mercury or GIT protocols) with commit tracking features (see table 3B) .

Few exceptions arise for code that is not freely available: GSAS, vTAS, and part of the Fullprof
Suite are not available for download. Some source code, although available for download, can be
restricted in use by their licensing scheme (which is mostly GPL-like).

Despite the development of some software on proprietary development frameworks (IDL, MatLab,
IGOR and PV-wave), the code is usually available for download. Although the development on
such commercial platforms typically implies the payment of licence fees, the learning curve is
usually fast and the scientific tools provided are often seen as a great advantage. A way to
circumvent the purchase cost is to distribute compiled versions, as for LAMP, Grasp, MFit and iFit.
The level of these commercial packages compares with that of NumPy in terms of compactness, and
functionalities, thus reducing the amount of coding to achieve a given task, and finally lowering the
total maintenance as a result.

Obviously, the computational performance of interpreted codes (Python, Matlab, IDL, ...) is lower
than that of lower-level language such as Fortran, C, C++ or to a lesser extent Java. To improve the
performance of the interpreted languages, all of them allow wrapping low level libraries/programs.
A sensible solution is thus to mix a high level language such as Python, with lower level codes such
as Fortran, C and C++ so that performance is improved locally.

In total, there is no obvious coding solution, and any software is a complex equilibrium between
coding, maintenance and performance costs. It all depends on the initial design, and the
programmers ability to keep it simple yet efficient.

If the main criteria for software production is set to be an open access environment, then the current
trend is to prefer a Python user layer, with underlying C/C++ routines for heavier computational
tasks. The low-level C/C++ layer can be derived from previous libraries such as the CERN ROOT
framework to benefit from decades of development, or implement a new framework, as adopted by
the Mantid project.
Commercial solutions offer compact, fully functional infrastructures for the developer and the user,
and can be distributed without license requirement. This saves development and maintenance efforts
at the cost of license fees.

FP7/NMI3-II WP6 – page 7/11

B.2 Testing

Almost none of the software reviewed possesses a unit test or system test platform, where unit tests
refer to for example testing of methods in classes, and system tests check a sequence of steps done
by the software to produce an expected result. The Mantid project is currently the only one that
fully makes use of a testing suite (Google C++ Testing Framework, including Mock tests).
iFit, while not implementing any specialised unit test platform, has a set of test routines. The same
is true for GSAS II and McStas. Other software provide example script files that can be viewed as
tests.

Mantid possesses two Jenkins (http://jenkins-ci.org/) Continuous Integration Servers (performing
builds on Windows 32 & 64 bit, Linux & Mac OS) that perform automated builds of the Mantid
Framework, MantidPlot and the install packages following each check-in to the Mantid Github
repository. A developer is notified if he or she breaks the build or if tests fails. McStas uses a
simpler home-made solution for developers notification, which de facto provides the same
functionality.

B.3 Documentation

User manuals are often available. Some of them are occasional guides rather than exhaustive step
by step guides. This reflects the fact that scientific software developers have traditionally been the
(first) users of the software and therefore not needed complete documentation. In addition,
documentation is the easiest task to postpone when early delivery of software and functionality puts
excessive demands on limited development resources. iFit, developed over the last few years,
provides good documentation for both beginners and advanced users, including code
documentation. GSAS-II provides good tutorials for less experienced users.

Some of the code is not intuitive and lacks documentation both in the code and technical
documentation that describe the source code. Comments in the code are generally sparse when they
exist. Some of the informative comments stored when pushing a code change to the source
repository are not very informative either. In practice, automatic documentation systems, such as
Doxygen (http://doxygen.mantidproject.org/), generate only a technical description of a project, and
can not replace a proper human-written documentation with tutorials and examples. It is clear that
much has to be done in these areas.

For Mantid there is roughly two sets of documentations. One is for the benefit of the developers,
which include Doxygen documentation and wiki pages. The other is aimed at users, which is
partially written by developers and partly by users of the software. For example, introductory
documentation for using the non-expert Muon interface within MantidPlot is entirely maintained by
the Muon scientists. The quality of the user documentation created by the developers, is largely
determined by the stakeholders and users of the project, who determine the overall task priory list of
the project. Hence the user documentation of the Mantid project has seen improvements based on
the demand of it users and is therefore tailored to them at SNS and ISIS. However, recent interest in
Mantid outside SNS/ISIS has highlighted some lack of documentation in a number of areas.

Some software (including Mantid and Sasfit, Frida) use auxiliary software to generate browsable
code documentation. Although useful to navigate through the code and the class dependency figures
(where they exist), if the code is not properly commented, the value of this solution is very limited.
For Mantid this kind of documentation is mainly useful for developers and a few expert users.

Mantid appears to be the only software presented here that had a software architecture planned.
However the situation to date is rather different from the initial plan and documentation about the

FP7/NMI3-II WP6 – page 8/11

current architecture is missing. The last documentation available about design dates from 2009.
McStas also started with a careful architecture design, which has been kept robust since then. The
iFit software was also designed with an initial phase during which two prototypes where
implemented. The Frida software is derived from previous projects such as IDA.
Generally speaking, many projects, even though not having written architecture principles from the
outset, start from well thought-out plans and are flexible enough to evolve with software iterations
towards stable architectures.

B.4 Code reuse and duplication

Re-factoring and reusing existing code is a quite general concept nowadays. For the case of the
recently developed software, reviewed in this study, two techniques were widely used: 1. the
complete recode of old applications in a new programming language and 2. a “facelift” of the user
interface and introduction of new features keeping the main core of the application (legacy code)
unchanged.

The ”best” software available to date are either based on the legacy source code with new interfaces
(e.g. EXPGUI interface for GSAS) or full recode of the old application. In GSAS II, for example,
only 5% of the legacy Fortran code was kept. For PDFfit2 the decision was to completely rewrite
the old Fortran-77 PDFfit engine in C++, and create python bindings to facilitate the production of
specific routines and bindings. The MantidPlot interface of Mantid is built as a fork of the QtiPlot
application, and the fit engine in Mantid uses the Gnu Scientific Library (GSL). The iFit package
includes a significant portion of contributed code, including BLAS/LAPACK/BOOST, as well as
hooks to CrysFML and McStas. Using external libraries is a way a reusing code that is handled to a
large extent in high-level languages like IDL and Matlab by the packaging of e.g. graphics and
maths libraries.

Our experience with recent software supports the opinion that new software may not perform better
than old software with 20 or 30 years of testing and fixing. It may thus be effective to directly
integrate old codes rather than re-coding them, especially when development resources are limited,
even though it does not look very appealing in terms of software architecture. This approach is
limited to the extent to which legacy code has to be used as is, in which case the only improvement
for the user may be a GUI and the possibility to create workflows with several such pieces of
software. Indeed, given the maturity of many experimental methods, the main gain to be provided
by new software may be in terms of user-friendliness for new, non-expert users, workflows and
eventually automated data treatment.

Code duplication and replication is evident throughout this review, even within a single project, but
also when comparing topically-close software (e.g. for small angle scattering and diffraction).
Duplication of features appears to increase with the number of developers involved and project size.
Mantid for example uses a tool called PMD/CPD <http://sourceforge.net/projects/pmd> in its
integration server to probe for code duplication. The result of running this tool shows a non-
negligible amount of duplicated code. Similar tools (e.g. simpler Duplo
<http://sourceforge.net/projects/duplo/>) can be employed to evaluate and limit code duplication.
All software projects should be reviewed periodically and have the resources to address issues like
code duplication.

The Mantid Framework is designed around the concept of an Algorithm which takes input data
workspaces and return output ones. This plug-in architecture is very convenient for the extensibility
of the platform. A number of algorithms constitute a large parts of code which are, in many cases,
directly incorporated in the main class. This makes code re-use between algorithms a difficult task,
which is resolved by simply duplicating snippets. A possible option would be to keep the code in

FP7/NMI3-II WP6 – page 9/11

the algorithms minimal and implement its functionality in separate independent packages. The
concept of workspace and algorithms was first used in LAMP, and is also central in iFit.

It is no surprise to find common, and thus overlapped, functionalities in different software. These
functionalities are often rewritten in different styles and languages. Unfortunately few software
make use of the other software knowledge by inclusion. In some cases, a full project or large parts
of it can be derived from an existing software (e.g. Sassena at the SNS, an nMoldyn fork). Such a
strategy does not lower the maintenance for our developer community, but rather doubles it. One
may thus argue that collaboration and contribution to a solid software package would be a better
solution.

Our recommendation is that collaboration among groups must be strengthened to avoid code
duplication. One could envisage listing all current software functionalities so that new software
could directly choose these as libraries. Such a catalogue could list software characteristics like
models, algorithms, I/O routines, interface design templates. Then, it would be easier to identify
overlapping functionalities, and potentially develop a unified set of libraries, simple and well
documented. Such a common infrastructure could inspire from the CERN ROOT framework, once
data structures have been agreed on. The FP7 project PaNdata (http://pan-data.eu/PaNdataODI)
should produce such a software catalogue.

C Summary of recommendations and Conclusion

We list below a set of items that should be considered when starting and managing a project.

Project infrastructure:
• svn/git repository and test suite
• daily package build with automatic reports on the test suite
• bug tracking system (TRAC), but in practice only developers add and browse tickets
• project email lists for all users and for the developer team
• documentation, both for users (as tutorials), and developers (technical)

Packaging/installation:
• Build packages for Windows, Linux, MacOSX
• Deliver releases regularly
• Installation should be achieved with a single mouse click, dependencies must be installed

automatically or included in packages
• Distribute sources under e.g. GPL or EUPL

Project design:
• Always prefer the simplest solution (objects with single responsibility/ few libraries)
• Define a simple and extendible data structure to be kept unchanged during the whole project
• Clearly separate computational level and GUI
• Computational level should be callable as libraries and as external executable commands
• Prefer past projects re-use/wrapping that recoding (at least as 1st implementation)
• Minimize dependencies w.r.t. 3rd party libraries (or fully include them)
• The main criteria for developers should be maintenance (that is future cost)
• The main criteria for users should be usability (script/GUI/documentation)
• Bound total project size (max 100 kLOC/developer)
• Pure coding technologies and IT aspects, including GUI's, should represent only a limited

fraction of the project
• Science should represent most of the project content and development effort

FP7/NMI3-II WP6 – page 10/11

• The balance of scientific and technical code or GUI in a software project depends on
whether the software aims principally to implement new methods for emerging experimental
techniques or to enhance user-friendliness and efficient workflows for non-experts

• A Python/C/C++ coding appears as the current preferable non-commercial solution
• Data storage should prefer NeXus/HDF5

Finally, we quote a number of thoughts discussed in the crystallography community (from the
IUCR Computing Commission 2008 report about Age Concern,
<http://www.iucr.org/__data/assets/pdf_file/0010/10531/iucrcompcomm_oct2008.pdf>)

• Users would prefer to press buttons rather than think about a problem – the Microsoft
syndrome.

• Users do not want complicated environments – you have to hide your cleverness from them.
• Users will only read a manual as a last resort – but a full reference manual must exist if only

for your own sake.
• Users do not understand the programmers problems – don’t expect sympathy when things

go wrong.
• Programmers do not understand the users problems – but users probably don’t understand

them either.
• Programmers relish complexity and compactness – it is a symbol of how clever they are.
• What is clear today will become obscure tomorrow – write code that you will never have to

re-visit, but just in case you do, comment it.
• Do not re-invent but do improve the wheel – stand on the shoulders of giants.
• Remember that you are not the only expert in the world – listen carefully to your colleagues,

critics and users.
• Ensure your sponsors will let you share the source code – otherwise it will certainly die.
• The internal data structure must be well defined and rigid – ad hoc data definitions lead to

duplication and confusion.
• Avoid near-duplication of procedural functionality – spend a little more time on generalising

one function.

Going further: Mantid evaluation
Given the findings of this review and that Mantid is the most recent and best-resourced software
project in the neutron and muon community, the main task (3) in the software workpackage will
evaluate the extent to which Mantid can be the basis of a European-wide, collaborative data
treatment effort.

FP7/NMI3-II WP6 – page 11/11

S
o

ftw
a

re

P
a

g
e

 1

T
a

b
le

 1
 :

 S
o

ftw
a

re
 e

va
lu

a
te

d

N
a

m
e

D
e

s
c

ri
p

ti
o

n
S

it
e

D
A

V
E

D
a

ta
 A

n
a

ly
si

s
a

n
d

 V
is

u
a

liz
a

tio
n

 E
n

vi
ro

n
m

e
n

t
F

le
xi

b
le

 r
a

p
id

 in
te

ra
ct

iv
e

 d
a

ta
 a

n
a

ly
si

s
L

A
M

P
L

a
rg

e
 A

rr
a

y
M

a
n

ip
u

la
tio

n
 P

ro
g

ra
m

IS
A

W
A

 s
im

p
le

 li
b

ra
ry

 to
 a

n
a

ly
se

 d
a

ta
H

ig
h

-p
e

rf
o

rm
a

n
ce

 c
o

m
p

u
tin

g
 a

n
d

 v
is

u
a

lis
a

tio
n

 o
f s

ci
e

n
tif

ic
 d

a
ta

.
T

h
e

 d
iff

e
re

n
tia

l e
vo

lu
tio

n
 a

lg
o

rit
h

m
 fo

r
fit

tin
g

 X
-r

a
y

a
n

d
 n

e
u

tr
o

n
 r

e
fle

ct
iv

ity
 d

a
ta

.

m
a

n
ip

u
la

te
 a

n
d

 d
is

p
la

y
u

p
 to

 2
0

 d
a

ta
 fi

le
s

co
m

p
u

te
 4

D
 r

e
so

lu
tio

n
 e

lli
p

so
id

 fo
r

T
A

S
S

A
S

 d
a

ta
 a

n
a

ly
si

s
a

n
d

 m
o

d
e

lli
n

g

G
ra

s
p

S
A

N
S

 R
e

d
u

ct
io

n
 a

n
d

 A
n

a
ly

si
s

A
n

a
ly

si
n

g
 a

n
d

 p
lo

tti
n

g
 s

m
a

ll
a

n
g

le
 s

ca
tte

rin
g

 d
a

ta
 (

n
o

 r
e

d
u

ct
io

n
?

)
G

S
A

S
G

e
n

e
ra

l S
tr

u
ct

u
re

 A
n

a
ly

si
s

S
ys

te
m

 (
d

iff
ra

ct
io

n
)

C
ry

st
a

llo
g

ra
p

h
y

D
a

ta
 A

n
a

ly
si

s
S

o
ftw

a
re

 (
d

iff
ra

ct
io

n
)

E
X

P
G

U
I

G
ra

p
h

ic
a

l u
se

r
in

te
rf

a
ce

 to
 G

S
A

S

P
D

F
fi

t2
M

o
n

te
 C

a
rlo

 S
im

u
la

tio
n

 o
f

T
A

S
 a

n
d

 o
th

e
r

n
e

u
tr

o
n

 in
st

ru
m

e
n

ts
M

o
n

te
 C

a
rlo

 s
im

u
la

tio
n

s
a

n
d

 d
a

ta
 a

n
a

ly
si

s
(T

A
S

, d
iff

ra
ct

io
n

)
V

irt
u

a
l I

n
st

ru
m

e
n

ta
tio

n
 T

o
o

l f
o

r
th

e
 E

S
S

vi
rt

u
a

l T
h

re
e

 A
xi

s
S

p
e

ct
ro

m
e

te
r

S
A

N
S

 d
a

ta
 r

e
d

u
ct

io
n

 a
n

d
 a

n
a

ly
si

s

ht
tp

://
w

w
w

.n
cn

r.
ni

st
.g

ov
/d

av
e

F
ri

d
a

ht
tp

://
ap

ps
.jc

ns
.fz

-ju
el

ic
h.

de
/d

ok
u/

fr
id

a/
st

ar
t

ht
tp

://
w

w
w

.il
l.e

u/
in

st
ru

m
en

ts
-s

up
po

rt
/c

om
pu

tin
g-

fo
r-

sc
ie

nc
e/

cs
-s

of
tw

ar
e/

al
l-s

of
tw

ar
e/

la
m

p/

In
te

g
ra

te
d

 S
p

e
ct

ra
l A

n
a

ly
si

s
W

o
rk

b
e

n
ch

 s
o

ftw
a

re
 p

ro
je

ct
 (

T
o

F
)

ftp
://

ftp
.s

ns
.g

ov
/IS

A
W

iF
it

ht
tp

://
ifi

t.m
cc

od
e.

or
g/

M
a

n
ti

d
ht

tp
://

w
w

w
.m

an
tid

pr
oj

ec
t.o

rg
/

G
e

n
X

ht
tp

://
ge

nx
.s

ou
rc

ef
or

ge
.n

et
/

M
fi

t
fit

 a
n

y
ty

p
e

 o
f (

x,
y)

 d
a

ta
 w

ith
 a

n
y

fit
 fu

n
ct

io
n

 (
e

ve
n

 c
o

m
b

in
a

is
o

n
s)

ht
tp

://
w

w
w

.il
l.e

u/
in

st
ru

m
en

ts
-s

up
po

rt
/c

om
pu

tin
g-

fo
r-

sc
ie

nc
e/

cs
-s

of
tw

ar
e/

al
l-s

of
tw

ar
e/

m
at

la
b-

ill
/m

fit
/h

om
e

M
v

ie
w

ht
tp

://
w

w
w

.il
l.e

u/
in

st
ru

m
en

ts
-s

up
po

rt
/c

om
pu

tin
g-

fo
r-

sc
ie

nc
e/

cs
-s

of
tw

ar
e/

al
l-s

of
tw

ar
e/

m
at

la
b-

ill
/m

fit
/h

om
e

R
e

s
c

a
l/M

a
tl

a
b

ht
tp

://
w

w
w

.il
l.e

u/
in

st
ru

m
en

ts
-s

up
po

rt
/c

om
pu

tin
g-

fo
r-

sc
ie

nc
e/

cs
-s

of
tw

ar
e/

al
l-s

of
tw

ar
e/

m
at

la
b-

ill
/m

fit
/h

om
e

S
a

s
v

ie
w

ht
tp

://
sa

sv
ie

w
.o

rg
/

ht
tp

://
w

w
w

.il
l.e

u/
in

st
ru

m
en

ts
-s

up
po

rt
/in

st
ru

m
en

ts
-g

ro
up

s/
gr

ou
ps

/ls
s/

gr
as

p/

S
a

s
fi

t
ht

tp
://

ku
r.

w
eb

.p
si

.c
h/

sa
ns

1/
S

A
N

S
S

of
t/s

as
fit

.h
tm

l

ht
tp

://
w

w
w

.n
cn

r.
ni

st
.g

ov
/x

ta
l/s

of
tw

ar
e/

gs
as

.h
tm

l

G
s

a
s

-i
i

ht
tp

s:
//s

ub
ve

rs
io

n.
xo

r.
ap

s.
an

l.g
ov

/tr
ac

/p
yG

S
A

S

ht
tp

s:
//s

ub
ve

rs
io

n.
xo

r.
ap

s.
an

l.g
ov

/tr
ac

/E
X

P
G

U
I/w

ik
i

F
u

llP
ro

f
S

u
it

e
R

ie
tv

e
ld

 a
n

a
ly

si
s

o
f

n
e

u
tr

o
n

/ X
-r

a
y

p
o

w
d

e
r

d
iff

ra
ct

io
n

 d
a

ta
.

ht
tp

://
w

w
w

.il
l.e

u/
si

te
s/

fu
llp

ro
f/

P
D

F
g

u
i

P
a

ir
d

is
tr

ib
u

tio
n

 f
u

n
ct

io
n

 f
it

(G
u

i f
o

r
P

D
F

F
it2

, d
iff

ra
ct

io
n

)
ht

tp
://

w
w

w
.d

iff
py

.o
rg

P
yt

h
o

n
 v

e
rs

io
n

 o
f P

D
F

fit
 (

d
iff

ra
ct

io
n

)
ht

tp
://

w
w

w
.d

iff
py

.o
rg

M
c

S
ta

s
ht

tp
://

w
w

w
.m

cs
ta

s.
or

g

R
e

s
tr

a
x

ht
tp

://
ne

ut
ro

n.
uj

f.c
as

.c
z/

re
st

ra
x/

V
it

e
s

s
ht

tp
://

w
w

w
.h

el
m

ho
ltz

-b
er

lin
.d

e/
fo

rs
ch

un
g/

gr
os

sg
er

ae
te

/n
eu

tr
on

en
st

re
uu

ng
/v

ite
ss

_e
n.

ht
m

l

V
ta

s
ht

tp
://

w
w

w
.il

l.e
u/

?i
d=

20
48

q
ti

K
W

S
ht

tp
://

iff
w

w
w

.if
f.k

fa
-ju

el
ic

h.
de

/~
pi

pi
ch

/d
ok

uw
ik

i/d
ok

u.
ph

p/
qt

ik
w

s

F
ie

ld
s

P
a

g
e

 2

T
a

b
le

 2
: S

ci
e

n
tif

ic
 c

a
te

g
o

rie
s

w
h

e
re

 s
o

ftw
a

re
 h

a
s

b
e

e
n

 a
p

p
lie

d
 to

.

S
tr

u
c

tu
re

S
p

e
c

tr
o

s
c

o
p

y
B

a
c

k
s

c
a

tt
e

ri
n

g
S

p
in

-e
c

h
o

P
o

w
d

e
r

S
A

N
S

S
in

g
le

-c
ry

s
ta

l
T

im
e

-o
f-

fl
ig

h
t

M
u

o
n

T
ri

p
le

-a
x

is
D

A
V

E
x

x
x

x
x

x
L

A
M

P
x

x
x

x
x

IS
A

W
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x x

x
x

x
G

ra
s

p
x x

G
S

A
S

x
x

G
S

A
S

-I
I

x
x

E
X

P
G

U
I

x
x

x
x

x
x

P
D

F
fi

t2
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

R
e

fl
ec

to
m

e
tr

y

F
ri

d
a

iF
it

M
a

n
ti

d
G

e
n

X
M

fi
t

M
v

ie
w

R
e

s
c

a
l/M

a
tl

a
b

S
a

s
v

ie
w

S
a

s
fi

t

F
u

llP
ro

f
S

u
it

e
P

D
F

g
u

i

M
c

S
ta

s
R

e
s

tr
a

x
V

it
e

s
s

V
ta

s
q

ti
K

W
S

V
e

rs
io

n
s

P
a

g
e

 3

T
a

b
le

 3
A

 :
S

o
ftw

a
re

 v
e

rs
io

n
s,

 w
h

ic
h

 w
e

re
 te

st
e

d
 (

Ju
ly

 2
0

1
2

)

N
a

m
e

S
ta

b
le

 v
e

rs
io

n
D

e
v

e
lo

p
m

e
n

t
v

e
rs

io
n

L
a

n
g

u
a

g
e

L
ib

ra
ri

e
s

D
A

V
E

v2
.0

 (
2

0
1

0
)

Y
e

s
(I

D
L

 8
, h

ttp
)

ID
L

 7
.0

v2
.1

.4
c

(2
0

1
2

)
C

+
+

L
A

M
P

2
0

1
2

Y
e

s
(f

tp
)

ID
L

 8
.1

IS
A

W
v.

 1
.9

.1
_

1
2

a
 (

2
0

1
2

)
Y

e
s

(f
tp

)
Ja

va
1

.2
 (

2
0

1
2

)
M

a
tla

b
V

2
.2

 (
2

0
1

2
)

Y
e

s
(g

it)
C

+
+

, P
yt

h
o

n
S

e
ve

ra
l

2
.0

.0
 (

2
0

1
1

)
P

yt
h

o
n

2
0

0
5

N
o

M
a

tla
b

2
.2

 (
2

0
1

2
)

C
+

+
, P

yt
h

o
n

G
ra

s
p

6
.6

0
 (

2
0

1
2

)
Y

e
s

(h
ttp

)
M

a
tla

b
0

.9
3

.3
 (

2
0

1
1

-0
5

-4
)

C
B

L
T

 fo
r

p
lo

tt
in

g
G

S
A

S
2

0
0

9
N

o
F

o
rt

ra
n

G
S

A
S

-I
I

0
.2

 (
2

0
1

2
)

P
yt

h
o

n
, F

o
rt

ra
n

E
X

P
G

U
I

2
0

1
1

T
C

L
2

0
1

2
Y

e
s

F
o

rt
ra

n
2

.0
-r

3
0

6
7

`(
2

0
0

9
)

Ju
st

 b
u

g
 fi

xe
s

(h
ttp

)
P

yt
h

o
n

P
D

F
fi

t2
3

.0
-r

3
0

6
7

`(
2

0
0

9
)

N
o

C
+

+
, P

yt
h

o
n

2
.0

 (
2

0
1

2
)

2
0

1
1

Y
e

s
(h

ttp
)

F
7

7
/9

0
R

E
S

C
A

L
, V

T
A

S
2

.1
1

(2
0

1
1

)
Y

e
s

(h
ttp

)
C

V
T

A
S

4
.1

 (
2

0
1

0
?

)
N

o
Ja

va

F
ri

d
a

Y
e

s
(s

vn
)

Y
a

cc
, F

le
x,

 B
is

o
n

,
G

S
L

,
g

n
u

p
lo

t

Jy
th

o
n

iF
it

Y
e

s
(s

vn
)

M
a

n
ti

d
G

e
n

X
Y

e
s

(s
vn

)
w

xP
yt

h
o

n
M

fi
t/

M
V

ie
w

/R
e

s
c

a
l

S
a

s
v

ie
w

Y
e

s
(s

vn
)

N
u

m
P

y,
 S

ci
P

y,
 M

a
tp

lo
tli

b

S
a

s
fi

t
Y

e
s

(s
vn

)

Y
e

s
(s

vn
)

W
xP

yt
h

o
n

, N
u

m
P

y,
 S

ci
P

y,
 M

a
tp

lo
tli

b
Y

e
s

(s
vn

)
F

u
llP

ro
f

S
u

it
e

C
ry

sF
M

L
, W

in
te

ra
ct

o
r

P
D

F
g

u
i

M
c

S
ta

s
Y

e
s

(s
vn

)
C

, P
e

rl,
 P

yt
h

o
n

P
G

P
L

O
T

, M
a

tla
b

,
M

a
tp

lo
tli

b
/C

h
a

co
,

x3
d

R
e

s
tr

a
x

V
it

e
s

s
B

L
T

w
is

h
, I

D
L

,
P

V
-W

a
ve

F
a

ci
lit

ie
s

P
a

g
e

 4

T
a

b
le

 4
 :

H
e

re
 is

 a
 li

st
 o

f s
o

m
e

 o
f t

h
e

 fa
ci

lit
ie

s
w

h
ic

h
 u

se
s

th
e

 r
e

vi
e

w
e

d
 s

o
ftw

a
re

. U
s

e
d

 a
t

N
a

m
e

IL
L

N
IS

T
P

S
I

L
L

B
, F

rIs
is

H
M

I
O

R
N

L
 S

N
S

A
N

S
T

O
J

A
E

A
X

-r
a

y
M

u
o

n
s

D
A

V
E

ye
s

ye
s

ye
s

ye
s

L
A

M
P

ye
s

?
ye

s
?

?
ye

s
?

ye
s

ye
s

?
ye

s
IS

A
W

?
?

?
?

?
?

?
?

?
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
?

?
?

?
ye

s
?

?
?

?
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
G

ra
s

p
ye

s
ye

s
ye

s
?

?
ye

s
ye

s
ye

s
ye

s
ye

s
?

?
ye

s
ye

s
G

S
A

S
ye

s
G

S
A

S
-I

I
ye

s
E

X
P

G
U

I
ye

s
ye

s
?

?
ye

s
ye

s
ye

s
ye

s
ye

s
P

D
F

fi
t2

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

?
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s

F
R

M
2

/J
ü

li
c

h

F
ri

d
a

iF
it

M
a

n
ti

d
G

e
n

X
M

fi
t/

M
v

ie
w

R
e

s
c

a
l

S
a

s
v

ie
w

S
a

s
fi

t

F
u

llP
ro

f
S

u
it

e
P

D
F

g
u

i

M
c

S
ta

s
(M

cX
tr

a
ce

)
R

e
s

tr
a

x
V

it
e

s
s

V
ta

s
q

ti
K

W
S

