

SE JRA High Pressure Task

MNI3 FP7 JRA SE Spring Meeting, Abingdon, UK

Oleg Kirichek

30.04.2012

Inert Gas Cells

Tasks:

- 1. 10 kbar automated gas handling system for inert gases and 15 kbar 'oil' intensifier for hydraulic testing (ISIS, LLB)
- 2. Design and produce cells and test seal systems up to 8 kbar (LT 300 K) (LLB)
- 3. Design and prototype 10 kbar cells for 300 K (LLB)

R. Done, O. Kirichek, B. E. Evans, Z. A. Bowden High pressure gas vessels for neutron scattering experiments NMI6, FP7, JRA: Report on current inert gas pressure cell technology 2010 *arXiv* 1007.3135

Developing a prototype of 8 kbar inert gas cell.

(a) Experiment results (ENGIN_X)

(b) The FEA model

Experiment results and FEA model for sample 4 (700MPa autofrettage pressure)

Paper submitted to *High Pressure Research* (2012):

Y. Ma *et al* A non-destructive experimental investigation of elastic plastic interfaces of autofrettaged thick-walled cylindrical aluminium high pressure vessels

JRA seal options

Standard Bridgman seal

Double Bridgman seal

LLB version

Seal test vessel

Aluminium/copper seal combination (left); Lead/copper seal combination (right).

Science & Technology Facilities Council

JRA Bridgman seal test results

Seal Configuration	Room Temp Leak Tight at 2Kbar	Room Temp Leak Tight at 10Kbar	Liquid Nitrogen Leak Tight at 2Kbar	Liquid Nitrogen Leak Test at 10Kbar
Pb\Cu\Pb\Cu\Pb (Copper seals lead plated)	10 mins hold time	3hrs hold time ✓	10mins RT hold time then immersed in N_2 10mins hold time	Pressurised to 10Kbar in N_2 3hrs hold time
Al\Cu\Al\Cu\Al (Copper seals lead plated)	10 mins hold time ✓	Left over night hold time	10mins RT hold time then immersed in N ₂ 10mins hold time (slight leak observed) ✓	Pressurised to 10Kbar in N_2 (leak sealed) 3hrs hold time
Al\Cu\Al\Cu\Al (Copper seals <i>not</i> lead plated)	Seals struggled to seal but finally sealed at 2Kbar ✓	Seal remained leak tight until 7.6Kbar then failed and never resealed during attempt to obtain 10Kbar	Test not performed	Test not performed

O Kirichek, R Done, C M Goodway, M G Kibble, B Evans, Z A Bowden Development of high pressure gas cells at ISIS *Journal of Physics: Conference Series* **340** (2012) 012008

Hydrogen Cells

Tasks:

- 1. Materials H_2 compatibility/neutron transmission properties (ISIS, LLB and HZB)
- 2. Sourcing, assembly and commissioning of 8 kbar and 10 kbar H_2 intensifiers and gas handling system (HZB, ISIS)
- 3. Produce and test cell for 4 kbar up to 700 K and for 6 kbar up to 300 K (ISIS, LLB)
- 4. Design and prototype 8 kbar cells for LT 300 K (ISIS, LLB)

Hydrogen compatible material tests

Joint project with Imperial College, the University of London

Hydrogen embritlement is a process where certain materials become brittle following exposure to hydrogen. High-strength steels, titanium alloys and aluminium alloys seem particularly vulnerable to this.

10Kbar Hydrogen Gas Handling System (Intensifier)

Due to financial restraints the 10 Kbar Hydrogen Intensifier is to be assembled and tested at ISIS by the Pressure & Furnace department. Components have been sourced and several of them purchased and the assembly is almost finished. Tests are scheduled for Summer 2012.

JRA 10Kbar Centre-Stick & H2 Valve

JRA 10Kbar Centre-Stick Drawing

Harwood C-4133 H2 10Kbar valve assembly on Centre-Stick

6kbar and **7kbar** Hydrogen gas cells for **LT – 300 K** have been designed and manufactured . Tests are planned for nearest future.

