
Which metallic alloys can be used as pressure cell windows. Case of SANS

Burkhard Annighöfer, Annie Brûlet, <u>Sophie Combet</u>, Arnaud Hélary, and Didier Lairez

> Task 2: "Kinetics and Dynamics" Saclay – 29th January 2013

> Laboratoire Léon-Brillouin (LLB) UMR 12 CEA/CNRS F-91191 Gif-sur-Yvette CEDEX, FRANCE

Aim of the study

✓ Pressure cell for SANS (and NSE) measurements, up to 6,000 bar, with small volumes ($\approx 100 \mu$ L) to study structure (and dynamics) of molecules in soft matter and biophysics (*e.g.* conformation of proteins, ...)

✓ Pressure cell windows in sapphire: no scattering but thick windows (several cm)

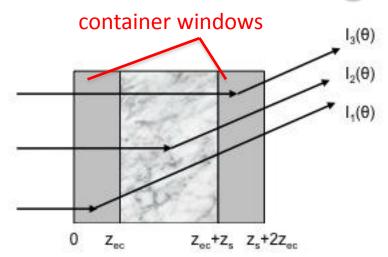
 \rightarrow very fragile!!

✓ Alternative solution:

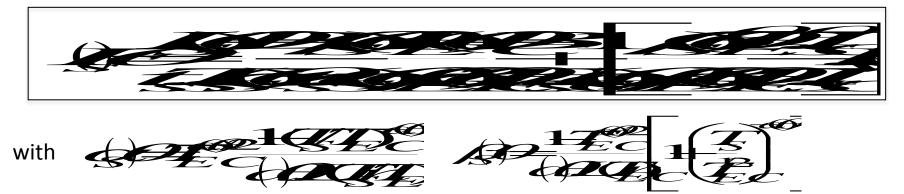
* thick **windows** in stainless materials (**alloys**), which display good mechanical properties, reasonable transmissions, and (if possible...) a « low » Q-scattering

* use of a method developped at LLB for **cell subtraction**:

• A. Brûlet et al. J Applied Crystallography 40: 165-177, 2007


• « Pasinet » reduction software: <u>http://didier.lairez.fr/pasinet2/doku.php</u>

SANS data corrections with scattering containers



Hypothesis: neutrons are scattered once

Sample

Empty container

Empty beam

Ref.: A. Brulet, D. Lairez, A. Lapp, and JP. Cotton. Improvement of data treatment in small-angle neutron scattering. *J Applied Crystallography* 40: 165-177, 2007 3/20

Pressure cell with removable windows

SANS: small beam, small angle \rightarrow flat cell with windows:

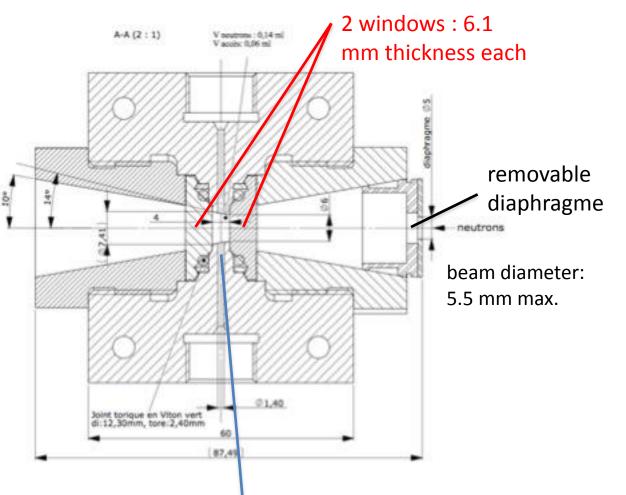
• difficulties: machining, sealing

advantages: thick
 body in resistant
 material (stainless
 steel)

• removable windows in suitable material

container removable windows

Pressure cell with removable windows



✓ cell body: Marval x12 stainless and extremely resistant → reusable

- ✓ windows: cheap
 (≈ 100 €) and easy to
 machine
- →can be changed
 → adaptable to the experiment
- ✓ easy to clean and purge

✓ temperature control (15-140°C)

nmi

sample (≈120 µL, 4 mm thickness)

pressure device on (the late) PAXE SANS spectrometer

Suitable alloys for the pressure cell windows

✓ **<u>Titane/Zirconium alloy</u>** (TiZr)

TiZr (Ti52Zr48, in mass) null matrix alloy (« zero scattering alloy »):

 $b_{coh}(Ti) = -3.44 \text{ fm}$ $b_{coh}(Zr) = 7.16 \text{ fm}$ $b_{coh}(67.7\% \text{ Ti} + 32.3\% \text{ Zr}) = 0 \text{ (in mole)}$

but: high absorption (σ_{abs} (Ti_{0.677}Zr_{0.323}) = 4.33 barn) and incoherent scattering (σ_{inc} (Ti_{0.677}Zr_{0.323}) = 1.96 barn) \rightarrow corrections

but: high coherent scattering at small Q due to microcrystallites \rightarrow Q > 0.07 Å⁻¹ (*e.g.* small proteins) P_{max} \approx 6,000 bar

Suitable alloys for

the pressure cell windows

✓ <u>Aluminium</u>

<u>Al 2017A</u>T4 (AlCu4MgSi)

good transmission (\approx 0.96 for 10 mm at 6 Å, better than pure Nb), reasonable low Q-scattering (essentially coherent: decreasing with Q) \rightarrow Q > 0.01 Å⁻¹

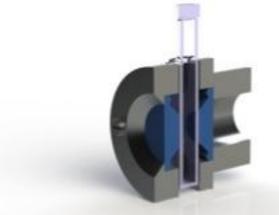
 $P_{max} \approx 4,500$ bar; easier to machine than pure Nb (very soft)

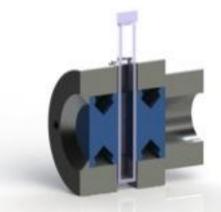
Al 7049A T6 (AlZn8MgCu)

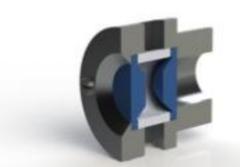
good transmission (\approx 0.95 for 10 mm at 6 Å) but high low Q-scattering (decreasing with Q) \rightarrow Q > 0.1 Å⁻¹

 $P_{max} \approx 6,000 \text{ bar}$

Image: Image of the second systemImage: Image of the second systemImage of the second systemImage: Image of the second systemImage of the second system


✓ <u>Stainless steel</u>: M30NW alloy (from Aubert & Duval) = X4CrNiMnMoN 21.9.4, $P_{max} \approx 6,000$ bar

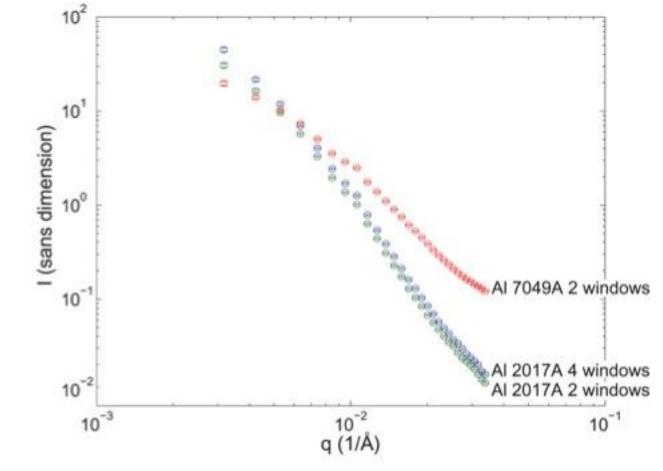



Use of a device dedicated for the measurements:

2 windows + sample in quartz cell

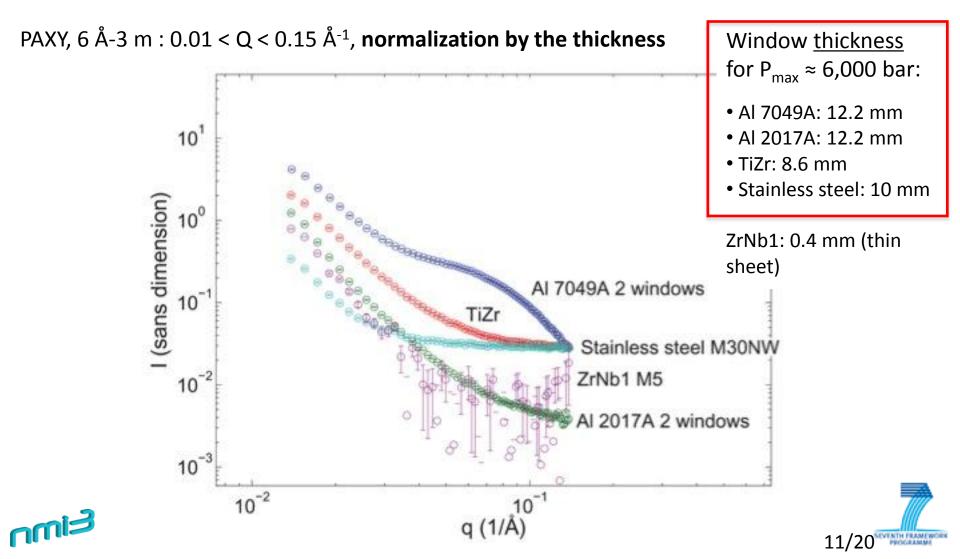
4 windows + sample in quartz cell

« empty cell » (2 windows)



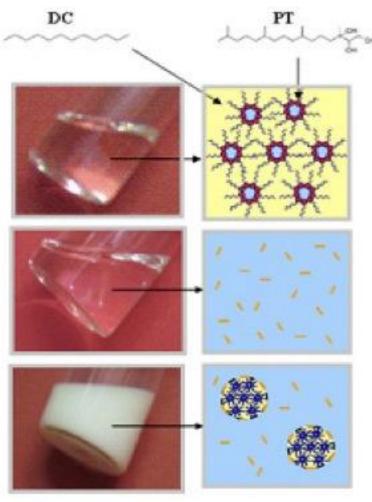
- Aluminium -low Q -windows alone

PACE, 13 Å-4.5 m : 0.003 < Q < 0.035 Å⁻¹



other alloys higher Q windows alone

	Nb of windows	Tickness of a window (mm)	Total thickness (mm)	Transmission at 13 Å	Tr at 13 Å for 10 mm thickness	Transmission at 6 Å	Tr at 6 Å for 10 mm thickness	Maximum pressure (bar) for 10 mm	Q range (Å ⁻¹)
AI 2017A	2	6.1	12.2	0.785	0.817	0.948	0.961	~4500	Q > 0.01
Al 2017A	4	6.1	24.4	0.524	0.768	0.896			
Alu 2017A + Mb	2	6.1	12.2 + Mb	0.506		0.556			
Alu 2017A + laponite/emulsion	2	6.1	12.2 + lapo.			0.724			
Alu 2017A + laponite/emulsion	4	6.1	24.4 + lapo.			0.708			
AI 7049A	2	6.1	12.2	0.760	0.801			-6000	Q > 0.1
Al 7049A	4	6.1	24.4			0.884	0.951		
Alu 7049A + Mb	2	6.1	12.2 + Mb	0.497		0.544			
Alu 7049A + laponite/emulsion	4	6.1	24.4 + lapo.			0.675			
TiZr (52.5%- 47.5%)	2	4.3	8.6			0.416	0.361	6000	Q > 0.07
TiZr + Mb	2	4.3	8.6 + Mb			0.261			
Stainless steel (M30NW)	2	5	10			0.295	0.295	~6000	Q > 0.01
ZrNb1 (M5)			0.4			0.993	0.842	~3000	Q > 0.01
Nb			10		1	0.8	0.801	-2500	Q > 0.01

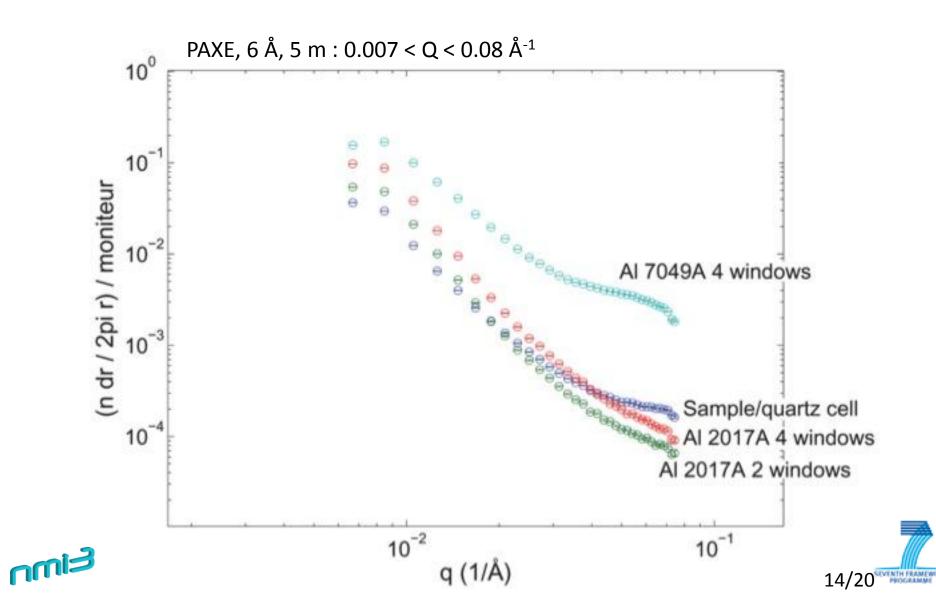


imn

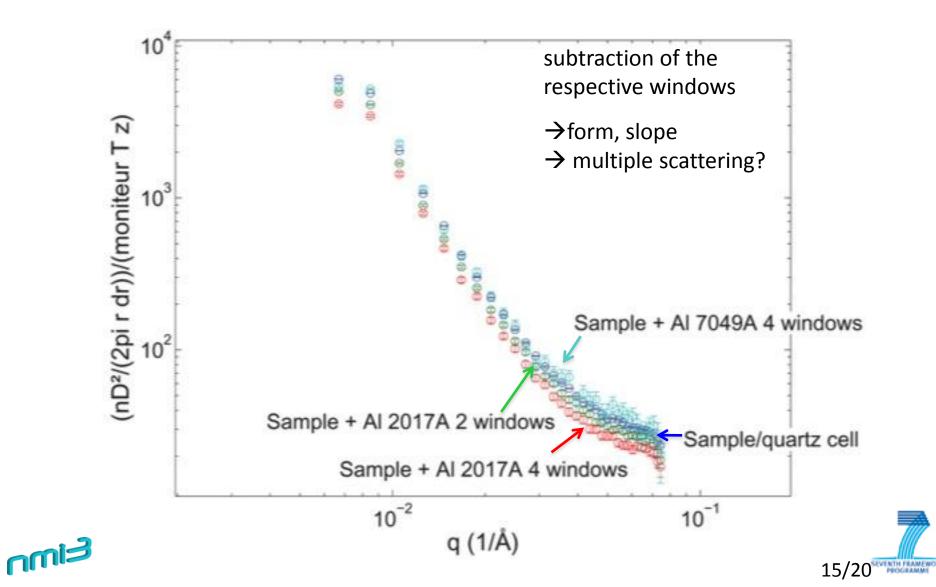
Test #1 - high scattering sample: laponite/emulsion

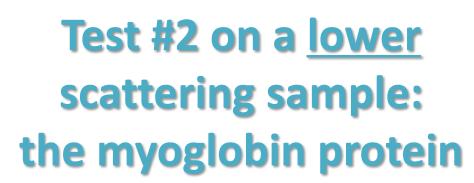
Laponite/emulsion:

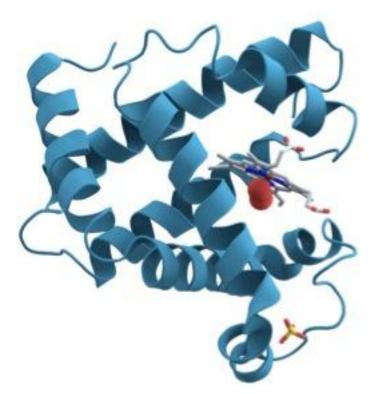
phytantriol (PT) and dodecane (DC) mixture (50:50) in water stabilized by Laponite clays (disc-like particles with a mean radius of 12.5 nm and a thickness of 1 nm) to form Pickering emulsions


<u>Sample:</u> in D_2O , in a 5 mm Hellma Suprasil quartz cell

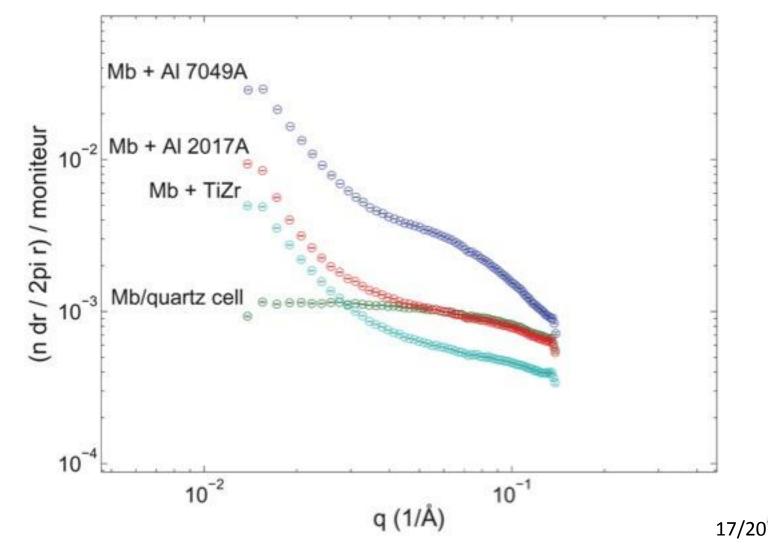
sample/quartz cell vs. windows alone





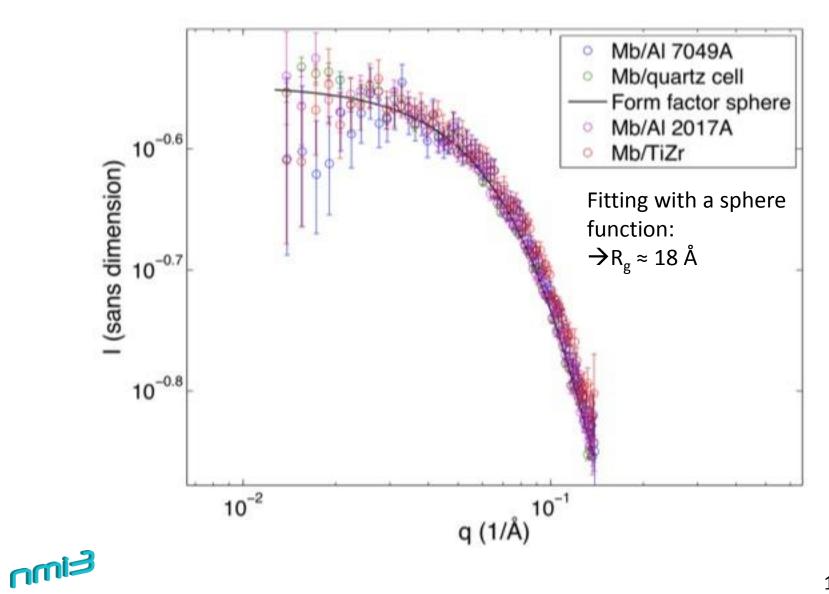


Myoglobin: small globular protein (17.7 kDa) Sample: 20 g/L of Mb in a D₂O buffer, in a 5 mm Hellma Suprasil quartz cell

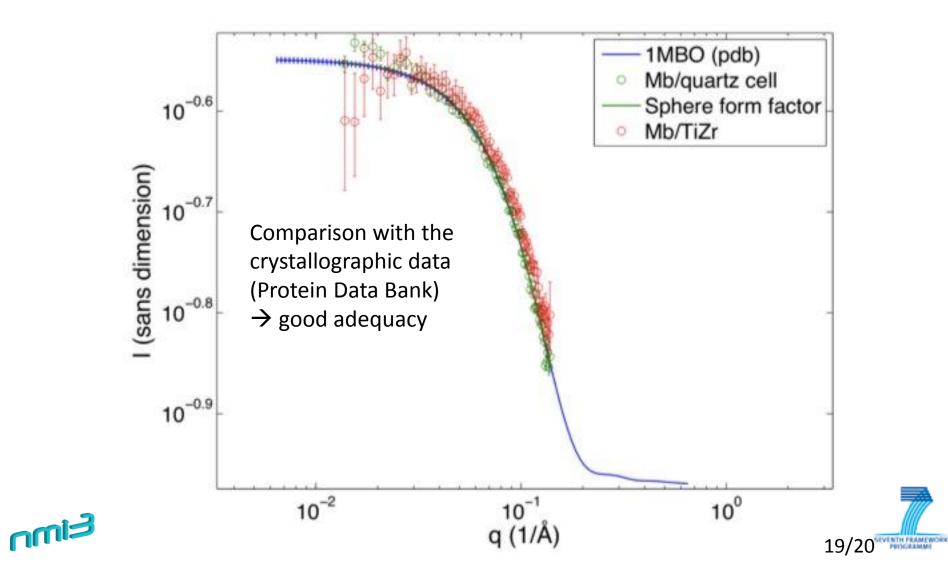

Eimn

EVENTH FRAMEWORK

Myoglobin sample + windows


PAXY, 6 Å-3 m : 0.01 < Q < 0.15 Å⁻¹

Cell subtraction and fitting



Cell subtraction and fitting

Good subtraction of the pressure cell windows (Al 2017A, Al 7049A, TiZr)

- both at low and high Q-values
- both for a high scattering sample (laponite) and for a much lower one (myoglobin protein); probably multiple scattering in the case of

laponite

Removable windows: adaptable to the experiment

- range of Q-scattering
- absorption
- P_{max} _ corrosion

Transmission: Al 2017A, Al 7049A, and M5 (ZrNb1): better than TiZr and much better than stainless steel

SANS test on ZrNb1 and Nb windows, with a sample

I Test of similar windows (non magnetic materials) on the neutron spin echo pectrometer (MUSES, LLB)

