

Humidity chambers on D16: past, present, future needs and wishes

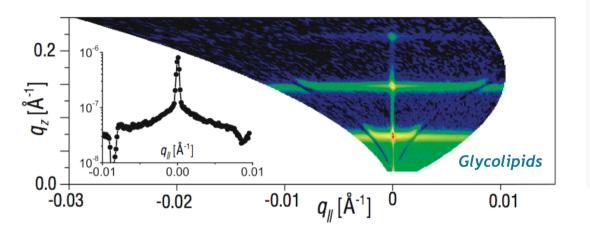
Bruno Demé Institut Laue-Langevin

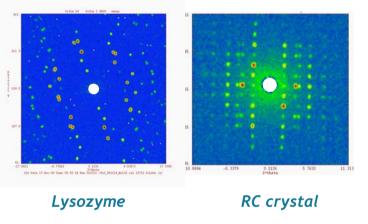
D16 main characteristics

Monochromatic beam: $\lambda = 4.75 \text{ Å} \text{ and } 5.8 \text{ Å} \rightarrow Q\text{-range } 0.01\text{--}2.5 \text{ Å}^{-1}$ $\Delta \lambda / \lambda = 0.01 - Flux = 5 \times 10^6 \text{ n.cm}^{-2}.\text{s}^{-1}$

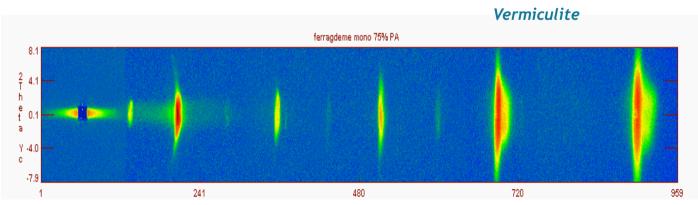
Continuous vertical focussing

Slit geometry (reflectivity on multilayers, powder and liquid diffraction) Pinhole geometry (SANS, single crystal diffraction)


Main focus: organic & inorganic multilayers


Organic: membrane multilayers

- Membrane models (synthetic lipids and mixtures)
- Lipid extracts (e.g.: thylakoid membrane lipids, skin lipids)
- Biological membranes (purple membrane)


Crystallography

- Single crystals

Inorganic multilayers: clays

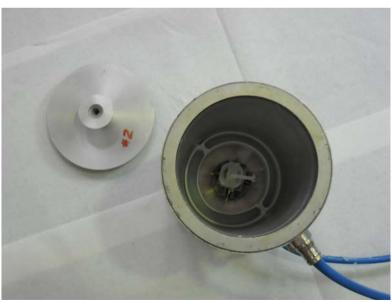
Up to 50% of beamtime with RH control !

- 1. Saturated salt solutions in equilibrium with air:
 - easy and stable
 - wide range of salts available -> RH 11% 98.5%
 - weak temperature dependence (no need of high precision T regulation)
 - <u>major drawback</u> : needs to open and re-equilibrate from ambient for every new RH
- 2. Two-compartment regulation chamber:

$$RH = \frac{P(Tw)}{P(Ts)}$$

- water reservoir generates saturated vapor pressure at $T_w <= T_{sample}$
- easy to change humidity with T controller, <u>no need to open chamber</u> !
- stable only if precise T regulation of both water reservoir (H₂O, D₂O) and sample
- 3. External humidity generator that flows humid vapor over the sample

- Humidity chambers are dedicated D16 sample environments
- 2 generations have been intensively used:
- with salt (generation 1): 4 chambers (3 large, 1 small)
- no salt (generation 2): 2 chambers
- Generation 3 (no salt): rather unsuccessful design that has been modified (1 chamber)
- New design (generation 4) started before it became one of the tasks of current FP7 JRA on sample environment for soft condensed matter



Generation 1: large (3 identical units)

Base can be regulated but not cover (removable)

Generation 1: small (1 unit)

Relative humidities from saturated salt solutions

	Relative Humidity (%RH)						
Temperature °C	Lithium Chloride	Potassium Acetate	Magnesium Chloride				
0 5 10 15 20	$11.23 \pm 0.54 \\ 11.26 \pm 0.47 \\ 11.29 \pm 0.41 \\ 11.30 \pm 0.35 \\ 11.31 \pm 0.31 \\ 11.31 \pm 0.37 \\ 11.3$	23.28 ± 0.53 23.40 ± 0.32 23.11 ± 0.25	$\begin{array}{c} 33.66 \pm 0.33 \\ 33.60 \pm 0.28 \\ 33.47 \pm 0.24 \\ 33.30 \pm 0.21 \\ 33.07 \pm 0.18 \end{array}$				
25 30 35 40 45 50 55 60 65 70 75	$\begin{array}{c} 11.30 \pm 0.27 \\ 11.28 \pm 0.24 \\ 11.25 \pm 0.22 \\ 11.21 \pm 0.21 \\ 11.16 \pm 0.21 \\ 11.10 \pm 0.22 \\ 11.03 \pm 0.23 \\ 10.95 \pm 0.26 \\ 10.86 \pm 0.29 \\ 10.75 \pm 0.33 \\ 10.64 \pm 0.38 \\ 10.51 \pm 0.44 \end{array}$	22.51 ± 0.32 21.61 ± 0.53	$\begin{array}{c} 32.78 \pm 0.16 \\ 32.44 \pm 0.14 \\ 32.05 \pm 0.13 \\ 31.60 \pm 0.13 \\ 31.10 \pm 0.13 \\ 30.54 \pm 0.13 \\ 29.93 \pm 0.16 \\ 29.26 \pm 0.18 \\ 28.54 \pm 0.21 \\ 27.77 \pm 0.25 \\ 26.94 \pm 0.29 \\ 26.05 \pm 0.34 \end{array}$				
80 85 90 95 100	$\begin{array}{c} 10.31 \pm 0.44 \\ 10.38 \pm 0.51 \\ 10.23 \pm 0.59 \\ 10.07 \pm 0.67 \\ 9.90 \pm 0.77 \end{array}$		$26.03 \pm 0.34 \\ 25.11 \pm 0.39 \\ 24.12 \pm 0.46 \\ 23.07 \pm 0.52 \\ 21.97 \pm 0.60$				

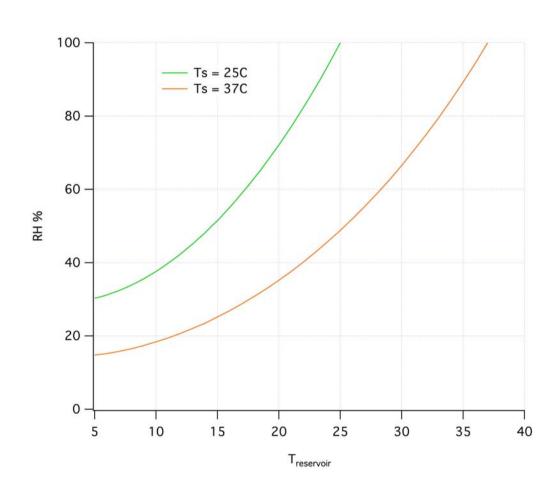
1 bath to regulate both reservoir and sample

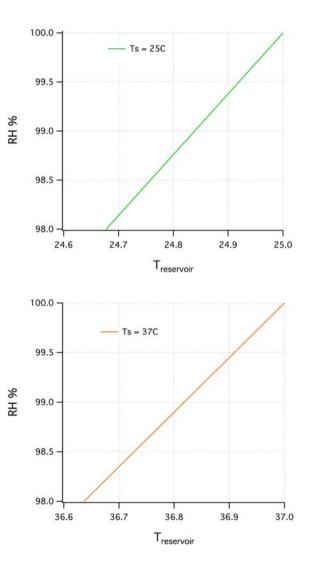
		Relativ	e Humidity ((%RH)		
Temperature °C	Potassium Carbonate	Magnesium Nitrate	Sodium Chloride	Potassium Chloride	Potassium Nitrate	Potassium Sulfate
0	43.13 ± 0.66	60.35 ± 0.55	75.51 ± 0.34	88.61 ± 0.53	96.33 ± 2.9	98.77 ± 1.1
5	43.13 ± 0.50	58.86 ± 0.43	75.65 ± 0.27	87.67 ± 0.45	96.27 ± 2.1	98.48 ± 0.91
10	43.14 ± 0.39	57.36 ± 0.33	75.67 ± 0.22	86.77 ± 0.39	95.96 ± 1.4	98.18 ± 0.76
15	43.15 ± 0.33	55.87 ± 0.27	75.61 ± 0.18	85.92 ± 0.33	95.41 ± 0.96	97.89 ± 0.63
20	43.16 ± 0.33	54.38 ± 0.23	75.47 ± 0.14	85.11 ± 0.29	94.62 ± 0.66	97.59 ± 0.53
25	43.16 ± 0.39	52.89 ± 0.22	75.29 ± 0.12	84.34 ± 0.26	93.58 ± 0.55	97.30 ± 0.45
30	43.17 ± 0.50	51.40 ± 0.24	75.09 ± 0.11	83.62 ± 0.25	92.31 ± 0.60	97.00 ± 0.40
35		49.91 ± 0.29	74.87 ± 0.12	82.95 ± 0.25	90.79 ± 0.83	96.71 ± 0.38
40		48.42 ± 0.37	74.68 ± 0.13	82.32 ± 0.25	89.03 ± 1.2	96.41 ± 0.38
45		46.93 ± 0.47	74.52 ± 0.16	81.74 ± 0.28	87.03 ± 1.8	96.12 ± 0.40
50		45.44 ± 0.60	74.43 ± 0.19	81.20 ± 0.31	84.78 ± 2.5	95.82 ± 0.45
55			74.41 ± 0.24	80.70 ± 0.35		
60			74.50 ± 0.30	80.25 ± 0.41		
65			74.71 ± 0.37	79.85 ± 0.48		
70			75.06 ± 0.45	79.49 ± 0.57		
75			75.58 ± 0.55	79.17 ± 0.66		
80			76.29 ± 0.65	78.90 ± 0.77		
85				78.68 ± 0.89		
90				78.50 ± 1.0		
95						
100						

Generation 2: double compartment, no salt solutions

NEUTRONS FOR SCIENCE

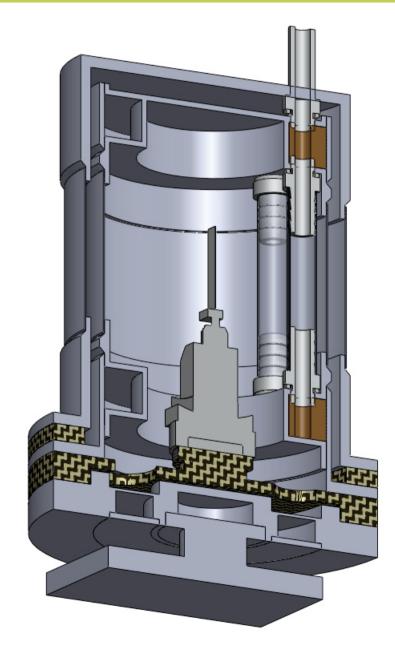
$$RH = \frac{P(Tw)}{P(Ts)}$$


Very important: bottom well insulated from top 2 independent water baths regulate the bottom (reservoir, T_w) and the top (sample, T_s)



Example of RHs available with double T regulation

On the D16 rotation table



- 2 Haake bath with +/-0.01C regulation around setpoint, can also regulate on sample
- control and readout by NOMAD software:
 - 2 regulations
 - 2 PT100 sensors (reservoir and sample)
 - 1 humidity sensor

Current developments (4th generation)

Improved insulation and fluid circulation

- More reliable (calibrated) humidity and T sensors
- More temperature sensors
- Save equilibration time (2-3 samples in chamber ?)
- Identical chambers (2-3 for D16, 2 more in the ILL sample environment pool)
- Become standard ILL sample environment
- Agree on design and specifications
- Feedback from other experiences (e.g.: S. Nagle project at CMU)

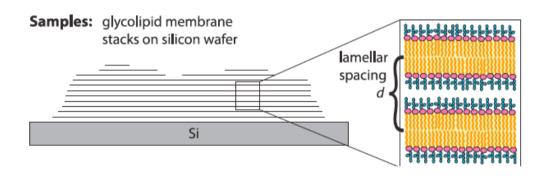
CMU humidity chamber for use at NCNR

Slatted sample holder

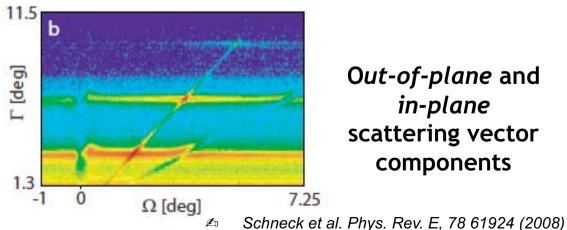
http://www.humidity.frank-heinrich.net/

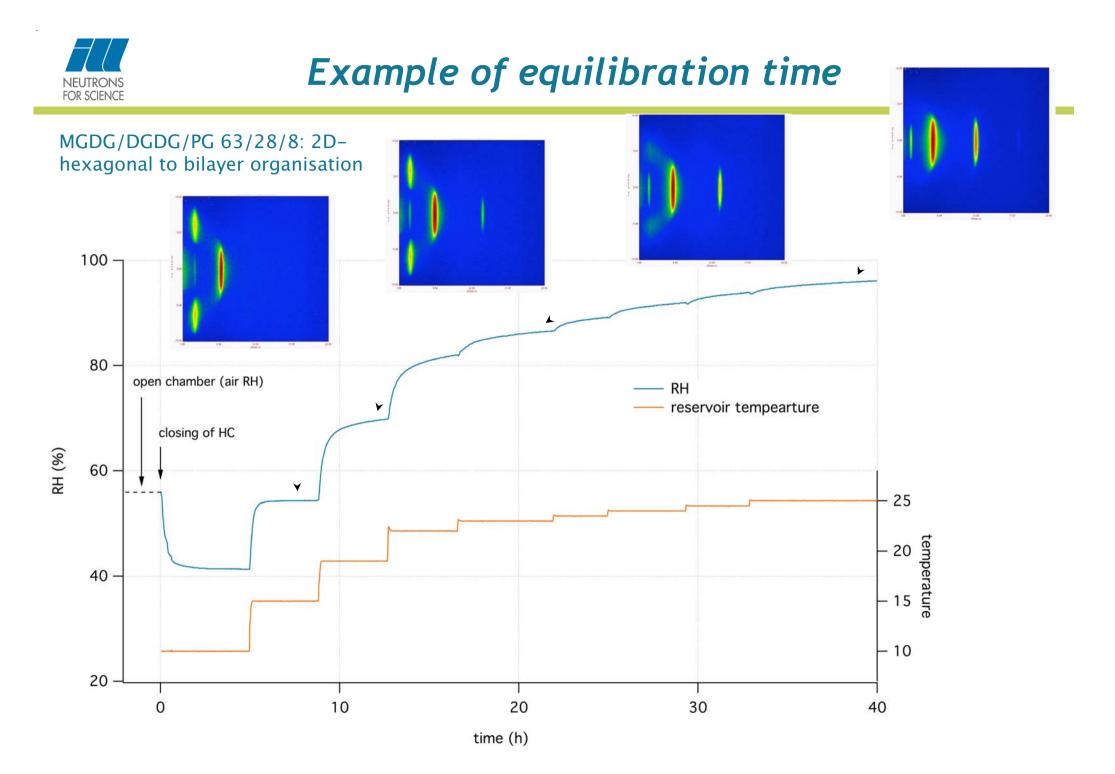
Wells for water or D₂O

- 1. Proposal for humidity chamber was written by Prof. Stephanie Tristram-Nagle and Dr. Frank Heinrich after preliminary data were collected using x-rays at CMU to test the SANS humidity chamber. Proposal was funded at the level of \$77K in May, 2008.
- 2. First meeting at NIST in December, 2008. People present: Joe Dura, Frank Heinrich, Andrew Jackson, Juscelino Leao, Dan Dender, Susan Krueger, Stephanie Tristram-Nagle (all Ph.D.'s).
- **3.** Goals for the humidity chamber set forth at the first meeting:
- Achieve all humidities from 0 to 100 % RH in a reasonable amount of time. Alternate goal, have 2 or 3 chambers for this purpose.
- Control humidity by flowing a humidified gas into chamber.
- Reduce condensation by using external light bulbs and double walls on the can.
- Provide homogenous internal humidity have an internal circulating fan, circular well.
- Exchange humidities quickly provide liquid exchange without opening chamber.
- Hold several samples at once have a multi-slatted sample holder.
- View inside have a fiberscope.
- Accurately measure humidity have a chilled mirror hygrometer.
- **3.** After fabrication and testing, many of these goals were reached, while some concepts were not successful.

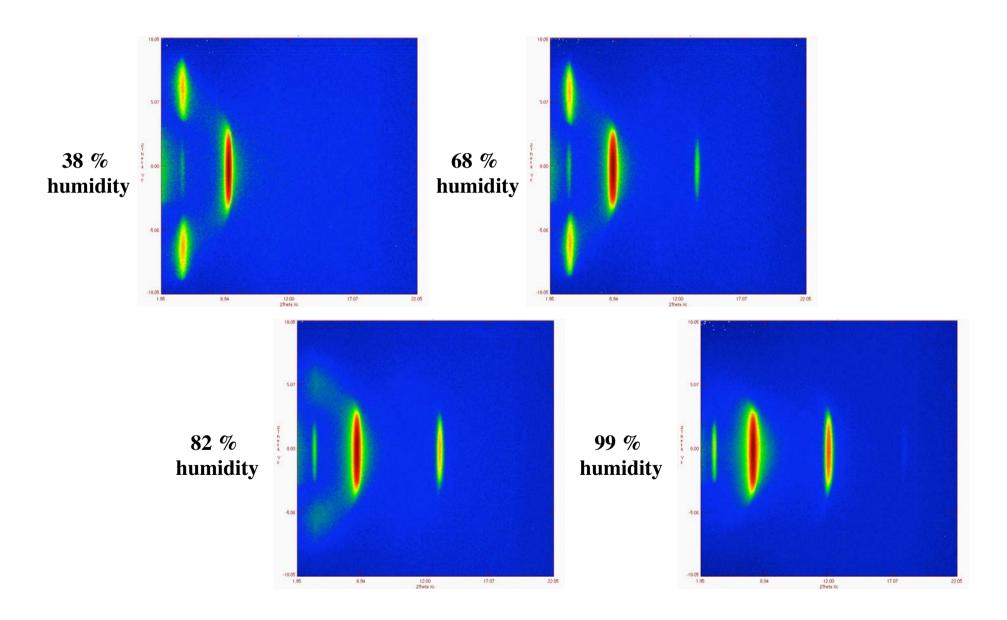

Soft Matter and biology sample environment

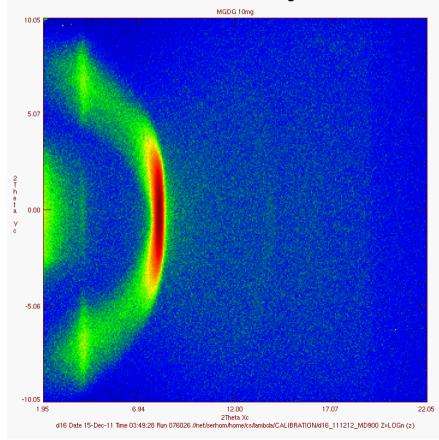
Humidity chamber with H₂O/D₂O exchange

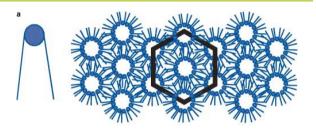



- Temperature range: 10 80 C
- Humidity up to 100% with H_2O/D_2O exchange
- Salt solution at fixed humidity

Membrane-bound saccharide chains cell glycocalix on the membrane mechanics Glycolipid membrane multilayers on planar silicon substrates

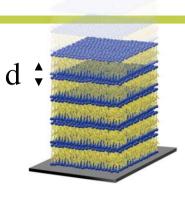

 \rightarrow The specular and off-specular neutron scattering


Hexagonal to bilayer phase transition in ternary plant lipid mixture: MGDG/DGDG/PG 63/28/8

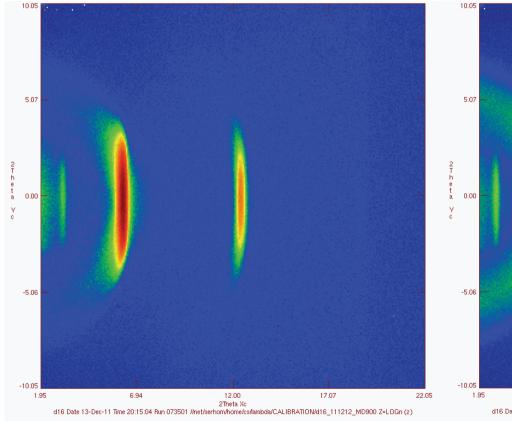


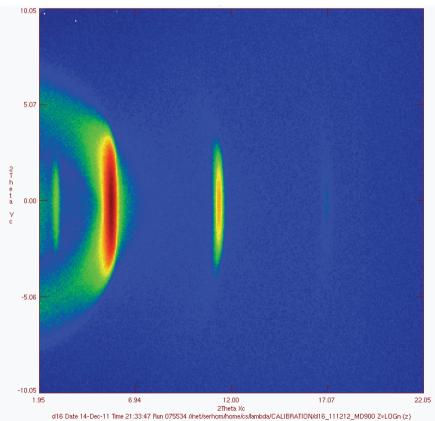
MGDG

Relative humidity: 38 %

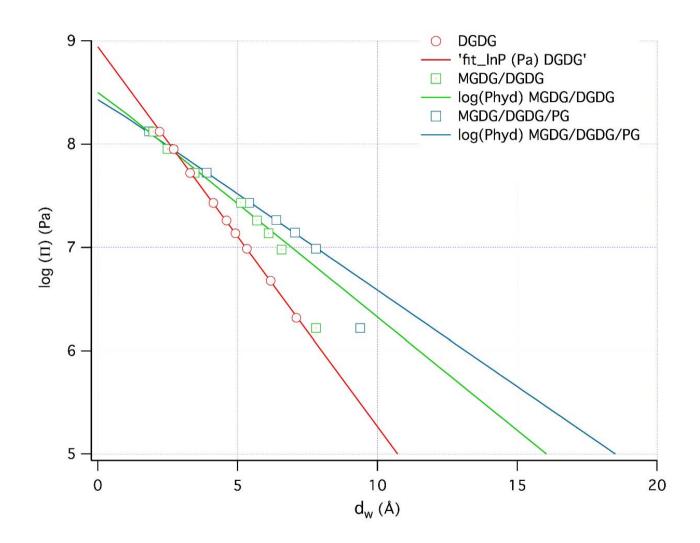


99 % MGDG 10mg D20 25/25C 10.05 5.07 'n t a 0.00 v -5.06 -10.05 1.95 6.94 12.00 17.07 22.05 2Theta Xc

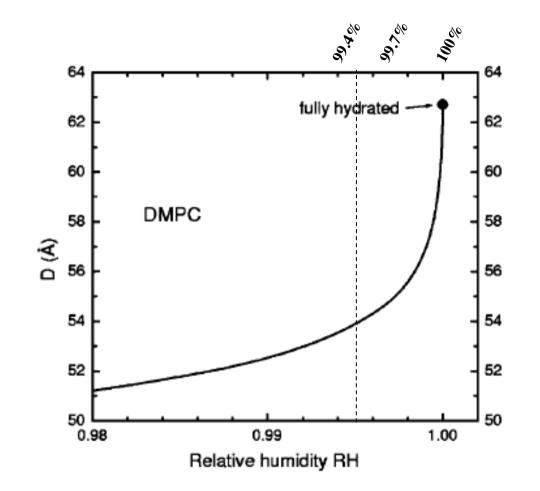




RH 38 %



99 %



Result: force vs bilayer distance

Why precision is required at high humidity ?

Chu et al. (2005), Phys. Rev. E 71:041904.

- Increase in-beam sample vertical section (30 to 45mm) with large Al windows (currently 45mm to 60mm)
- Several samples in 1 can vs several cans on precision translation
- "Perfectly" insulated can (materials + double wall design, no thermal bridge): inside-outside & top-bottom
- Higher precision T & RH sensors (individually calibrated)
- On-chip temperature sensor ?
- A single communication cable for all sensors (T1, T2,..., RH)
- A single can design compatible with the two regulation ways (salts double compartment system) if salt solutions exchangeable

- External humidity generator + air flow (CMU)
- Poorly insulated cans (ILL's generation 3 initial design)
- (Alternative to) Honeywell humidity sensors ?

RWiki	Recent Changes - Search: Go
Menu HomePage Administration Discussion Notes Drawings Testing Specifications Purchases Help Basic Editing Documentation Index PmWiki FAQ PmWikiPhilosophy ChangeLog edit SideBar	 Main / View Edit History Print HomePage Welcome to the Humidity Chamber Project Page. See the menu on the left for project documents. May 10, 2011: SummaryTalk.pdf, SummaryTalk.ppt, given by Prof. S. Tristram-Nagle at NCNR. December 21, 2010: Testing of CMU hydration chamber carried out at CMU by S. Tristram-Nagle and K. Akabori. September 2, 2009: Telephone Conversation between S. Tristram-Nagle and D. Dender discussing some details of the new chamber design. August 2009: Meeting between S. Tristram-Nagle and F. Heinrich discussing the new chamber design. Drawings were finalized and these will be evaluated by NIST scientists before commencing fabrication of the chamber. June 2009: Meeting between S. Tristram-Nagle and F. Heinrich discussing the new chamber design May 2009: Second testing of the SANS chamber with active humidity control on the NG7-reflectometer April 2009: Dender published top-level specifications for the new chamber March 2009: First testing of the SANS chamber with active humidity control and/or external humidity generator on the NG7-reflectometer December 2008: Meeting between S. Tristram-Nagle, F. Heinrich, D. Dender, J. Dura, C. Majkrzak, J. Leao, and A. Jackson discussing the new chamber design December 2008: First drawings for the new humidity chamber based on the SANS humidity chamber
	Edit - History - Print - Recent Changes - Search Page last modified on May 11, 2011, at 11:21 AM