Roberto De Renzi¹, Fabio Bernardini², Sandro Massidda², The muon site: a too box **Tapas Samanta¹**

¹Dipartimento di Fisica and C.N.I.S.M. Parma, Italy

²Dipartimento di Fisica Cagliari, Italy

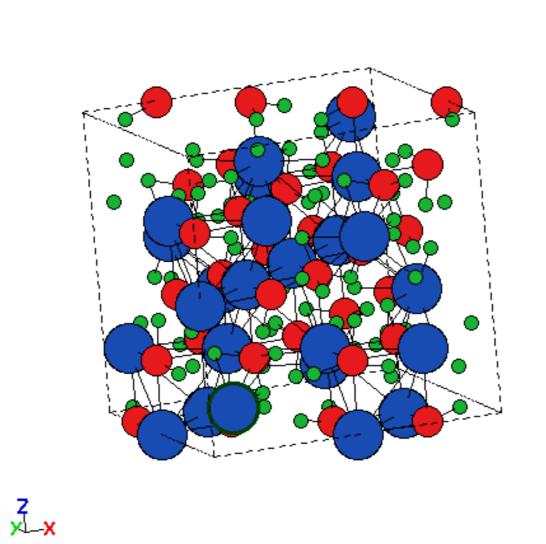
Aim: put together an easily shearable tool to identify the muon site.

Functions and strategies:

- 1. Open software with simple mathematics and graphics (matlab like)
- 2. Access to a crystallographic library, to define and visualize lattice & magnetic structure
- 3. Exploration of tentative muon sites:
 - Simple dipolar sums, with given point-like magnetic moments
 - Point charge electrostatic potential, e.g. constrained on spheres around anions
- 4. DFT calculation of muon site

- 1. Python http://www.python.org/ 🥐 python" Open software, available on all OS
- Quick interface to software in any other language, see bona below
- **Ipython**, specialized for interactive use, with more extensive help

Matlab-like dialect http://matplotlib.sourceforge.net/


- Full muon potential
- Zero point motion
- Full hyperfine field (contact and dipolar)
- 5. Documentation, both embedded and web based

2. ASE: Atomistic Simulation Environment https://wiki.fysik.dtu.dk/ase

Includes full crystal symmetry groups lattice visualization initial magnetic moments and ion charges interface to many DFT calculators

import ase import numpy as np from ase.lattice.spacegroup import crystal a = 8.3940fe3o4=crystal(['Fe','Fe','O','H'], basis=[(0.12500, 0.12500, 0.12500), (0.5, 0.5, 0.5),(0.25480, 0.25480, 0.25480),(0.285, 0.285, 0.1302)], setting=2, spacegroup=227, cellpar=[a, a, a, 90, 90, 90], size=(1,1,1),pbc=False)

🗙 🔿 🔿 ase-crZo96.traj File Edit View Tools Setup Calculate Help

#0 Iron (Fe): 1.049 Å, 1.049 Å, 1.049 Å tag=0 mom=0.00

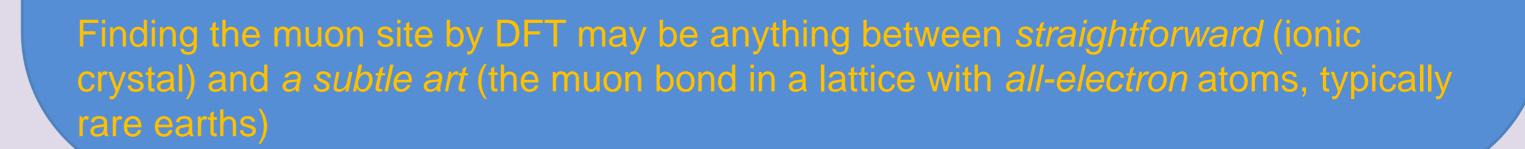
4. Density Functional Theory calculator Many different programs can be installed and invoked with a simple python command:

DFTB⁺

∠leur′

Hb Hotbit

UASP


TURBOMOLE

EMT Asap

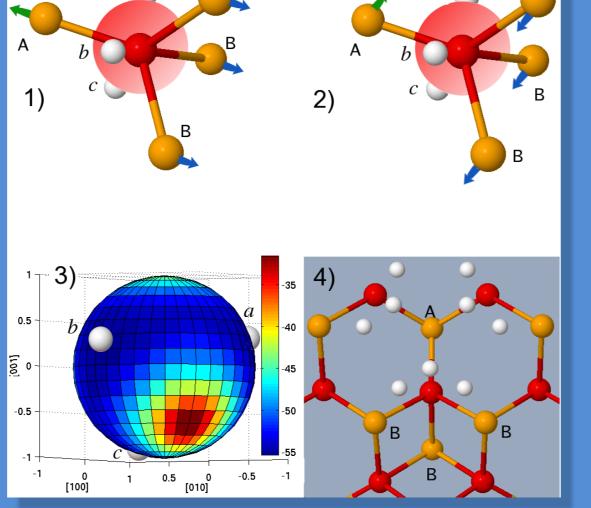
More can be interfaced, including Wien2k

One is already included and allows simple calculations EMT

3. ASE Zero-order muon site validation. Reproduce two types of published results

Those obtained by simplified strategies, such as YBa₂Cu₃O₆ [1] and Fe₃O₄ [2], : i. find point charge potential V minima, ii. check dipolar sums against local field B_n

Dipolar sum code 5 declarations 12 lines of code with check of convergence


Point charge potential with Ewald's trick 4 declarations 26 lines of code

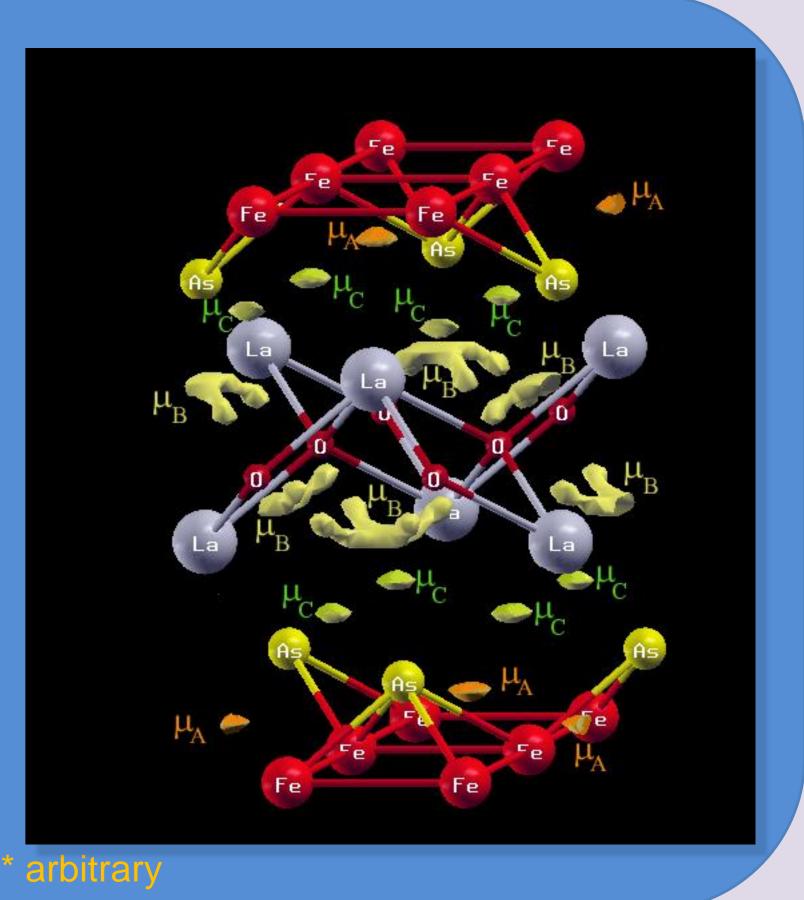
ase.visualize.view(fe3o4)

See also http://www.fis.unipr.it/~derenzi/dispense

(node pmwiki.php?n=MuSR.ASEStart#potential)

Those obtained by DFT (see box 4. on the right)

4. Density Functional Theory by F. Bernardini


Example, cfr. [3]: LaFeAsO

only Coulomb! $V = V_{\mu} = -V_{e}$

Muon site(s) volume: centered at min(V) defined by harmonic zero energy E₀ within the isopotential surface

 $V = \min(V) + E_0$

 μ_B μ_{C} 0.55 0* 0.94 V(eV) *E*₀(eV) 0.15 0.12 0.16

5. Documentation **Embedded**, ipython provides tabbed completion of commands

To be done Documentation Packaging, distribution, installation instructions

• interactive help on each available command just by entering command?

Web based, a wiki (under construction) with instructions on how to install the various bits

- Python itself
- ASE
- The chosen DFT
- The toolbox

examples of how to run the toolbox

Choice of suitable DFT for ASE Full hyperfine field calculation Muon bond More extensive validation

Acknowledgements We thank G. Allodi for suggestions and discussion. This work is supported by NMI3 grant FP7-226507, WP20 Muons Task 4 Simulation codes

References [1] M. Weber, P. Birrer, F. N. Gygax, B. Hitti, E. Lippelt, H. Maletta, A. Schenck, Hyperfine Interactions 63, 207 (1990) [2] M. Bimbi, G. Allodi, R. De Renzi, C. Mazzoli, H. Berger, Phys. Rev. B 77, 045045115 (2008) [3] H. Maeter et al., Phys. Rev. B 80, 094524 (2009)

Cancun, Mexico

