Time resolved SANS combined with a stopped flow equipment

Isabelle Grillo

Institut Laue Langevin, Large Scale Structures, 6 rue Jules Horowitz, B.P. 156, 38042 Grenoble Cedex 9

t₁, intermediate state

 $t_{\scriptscriptstyle \infty}$, equilibrium state

SFM 300 from Bio-logic with 3 syringes controlled by step motors

Interest of a SF device

- precise control of volumes, flow rates and times of mixing
- synchronization of mixing with the beginning of the acquisition
- reproducibility

Observation Head specially designed for SANS

Sealing (Isolast[®])

New observation head with a precise temperature control

(Thomas Sottmann, Institut für Physikalische Chemie, Köln)

Principle of a real time SANS experiment

Acquisition time -t_{min} 10 – 100 ms per frame

Dead time (time to fill the cell) -50 – 150 ms

Acquisition sequences

- constant time t1 =t2= .. =tn
- geometric series t_n=t₁ rⁿ⁻¹
- -any other personal choice

Electronics

- up to 450 frames for the intermediate storage

- no dead time between two frames

Cycling

- increase of statistics

Side use of the stopped-flow equipment for T-jump

Kinetics of Collapse Transition and Cluster Formation in a Thermoresponsive Micellar Solution of P(S- *b* -*NIPAM- b* -*S*) Induced by a Temperature Jump

J. Adelsberger, C. Papadakis et Al, Macromol. Rapid Commun. 2012, 33, 254–259

Papers published in the last decade (D11, D22)

Mesoporous materials

How does ZrO₂/surfactant mesophase nucleate? Formation and mechanism Né et al, Langmuir, 2003, **19**, 8510 Growth of mesoporous silica nanoparticles monitored by time-resolved small-angle neutron scattering Hollamby et al Langmuir 2012, **28**, 4425

Surfactant systems

Formation and growth of anionic vesicles Grillo et al, Langmuir 2003, 19, 4573 Monomer-aggregate exchange rates in mixed di-alkyl chain cationic-nonionic surfactant microstructures Tucker et al, Langmuir, 2009, **25**, 2661 Time-resolved small-angle neutron scattering as a lamellar phase evolves into a microemulsion Tabor et al, Soft Matter, 2009, **5**, 2125 Mesodynamics: watching vesicle formation in situ by small-angle neutron scattering Bressel et al, Colloid Polym Sci, 2010, **288**, 827

Polymers

Equilibrium Chain Exchange Kinetics of Cylindrical and Spherical Diblock Copolymer Micelles Lund et al, Macromolecules, 2011, **44**, 6145 Rupture of pluronic micelles by di-methylated β-cyclodextrin is not due to polypseudorotaxane formation

Valera et al, J Physical Chemistry B, 2012, 116, 1273

Applications of stopped-flow in SAXS and SANS Grillo, COCIS, 2009, **14**, 402 (review paper)

Improve the cell filling.

Cell volume 250 μ L but 600 μ L really needed to be sure to remove completely the old solution and replace it by the fresh solution.

New cell geometry (not rectangular?)

Different cell thicknesses

New furnace for T-jump.

Any suggestions /need?

Size evolution with time

- Continuous decrease of the rotation axis Ra down to 60 ${
 m \AA}$
- Rb remains constant at 23 Å, as for pure $C_{12}E_4$ worm-like micelles
- Equilibrium reached in 30 min