

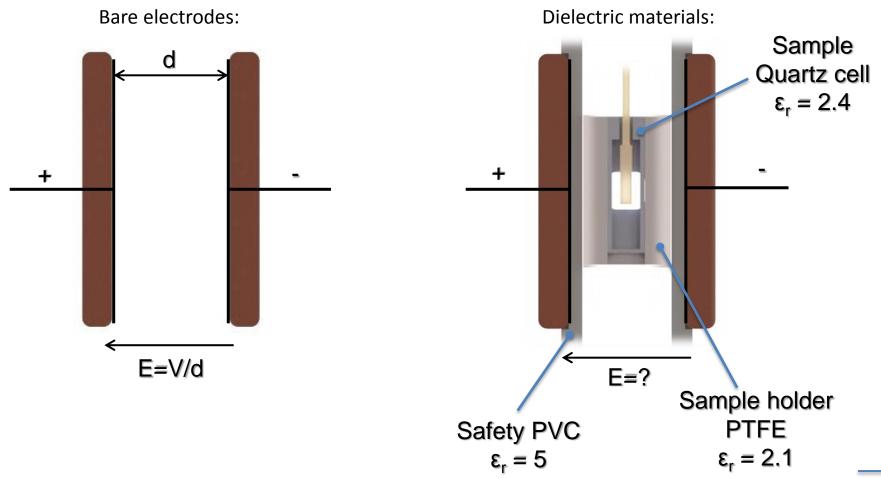
Works on electric field cell with external electrodes

Arnaud HÉLARY

Task 2: "Kinetics and Dynamics" ILL - May 15th 2014

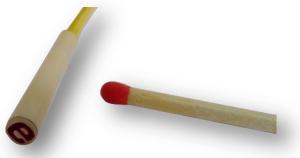
Laboratoire Léon-Brillouin (LLB) UMR 12 CEA/CNRS F-91191 Gif-sur-Yvette CEDEX, FRANCE

MI3-FP7-JRA-II-WP20 "Advanced neutron tools for Soft and Bio-Materials"


- Actual electric field cell
- Electric field measurements carried out
- A new design
- Visit at HZB

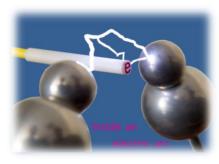
Bibliography

- Range of electric field : From 0.04 to 4 kV/cm
- Range of frequency From 0 to 60 kHz
- Range of temperature From 20 to 60 °C


Actual electric field cell

Review

Kapters : An Electro-Optic probe to measure High Electric Fields


- In-situ measurements inside fluids
- E-field measurement without perturbation induced by the sensor
- Small size (Ø4mm) ; Slightly larger than a matchstick
- Pockels effect (birefringence proportional to the electric field)
- From 10Hz to 18GHz bandwidth

The probe (left) compared with a matchstick (right)

The measuring instrument

Performed measurements in different fluids to test the electric field

- From 0.1 kV to 2 kV at 10 kHz
- 2.5 cm electrode spacing
- Hellma cell (type 110-5-40) 5 mm sample thickness
- Sample holder made from PTFE

Fluid	Permittivity ε _r
Air	1.0
Toluene	2.3
Ethanol	24.3
DMSO (Dimethyl sulfoxide)	46.7
Distilled water	78.6
Tap water	80.0

Electric field cell in the 25mm space configuration

Performed measurements in different fluids to test the electric field

- From 0.1 kV to 2 kV at 10 kHz
- 2.5 cm electrode spacing
- Hellma cell (type 110-5-40) 5 mm sample thickness
- Sample holder made from PTFE

Fluid	Permittivity ε _r	Electric field (kV/cm)
Air	1.0	3.07E-1
Toluene	2.3	2.45E-1
Ethanol	24.3	2.36E-2
DMSO (Dimethyl sulfoxide)	46.7	5.32E-3
Distilled water	78.6	2.72E-3
Tap water	80.0	5.20E-4

Electric field in different fluids with an applied voltage of 2kV at 10kHz at 20°C

Remark 1:Without dielectrics the electric field would be equal to 0.8kV/cm

Influence of the permittivity of the sample holder on the measurement

- From 0.1 kV to 2 kV at 10 kHz
- 3.8 cm electrode spacing
- Hellma cell (type 110-5-40) 5 mm sample thickness
- Measurements with PVC ($\epsilon_r = 5$) and PTFE ($\epsilon_r = 2,1$) sample holder and toluene sample

Material	Permittivity ε _r	Electric field (kV/cm)
PTFE (Teflon)	2.1	0.155
PVC	5.0	0.165

Sample holder in PVC on the EFC and the sample holder in PTFE (behind)

A new design

A closed cell and thermalized

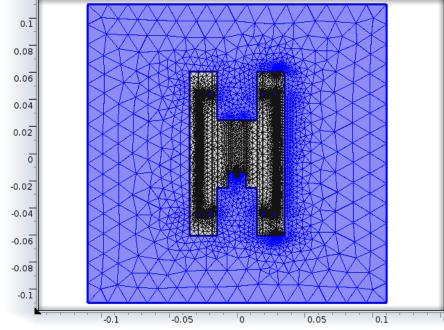
• Cooling system on the electrodes to thermalize the sample

• Closed cell for the safety and less dielectrics

A new design

A closed cell and thermalized

• Cooling system on the electrodes to thermalize the sample


• Closed cell for the safety and less dielectrics

Simulations with COMSOL Multiphysics

Comparison between measurements with Kapteos's probe and simulation with toluene

Mesh for simulations

- Actual electric field cell for samples with low permittivity
- New design + simulations

Conclusions

LLB Team	HZB Team
Burkhard Annighöfer	Dirk Wallacher
Annie Brûlet	Matthew Barret
Patrice Permingeat	Nico Grimm
Olivier Tessier	

Thank you for your attention !