Electric field cell for SANS

General JRA Meeting

15th October 2014 Eynsham Hall, UK Task2: "Kinetics and Dynamics"

Arnaud HÉLARY, Burkhard ANNIGHÖFER and Annie BRÛLET

Laboratoire Léon-Brillouin (LLB) UMR 12 CEA/CNRS F-91191 Gif-sur-Yvette CEDEX, FRANCE

NMI3-FP7-JRA-II-WP20 "Advanced neutron tools for Soft and Bio-Materials"

Ceea Cons

Bibliography

In the literature, the most commonly used configurations are:

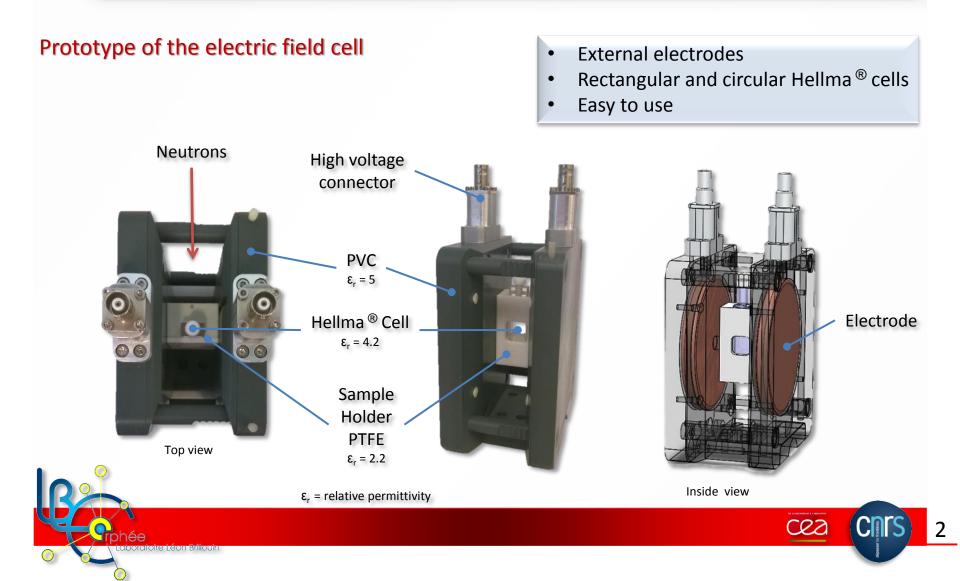
• Range of electric field:

From 0.04 to 4 kV/cm

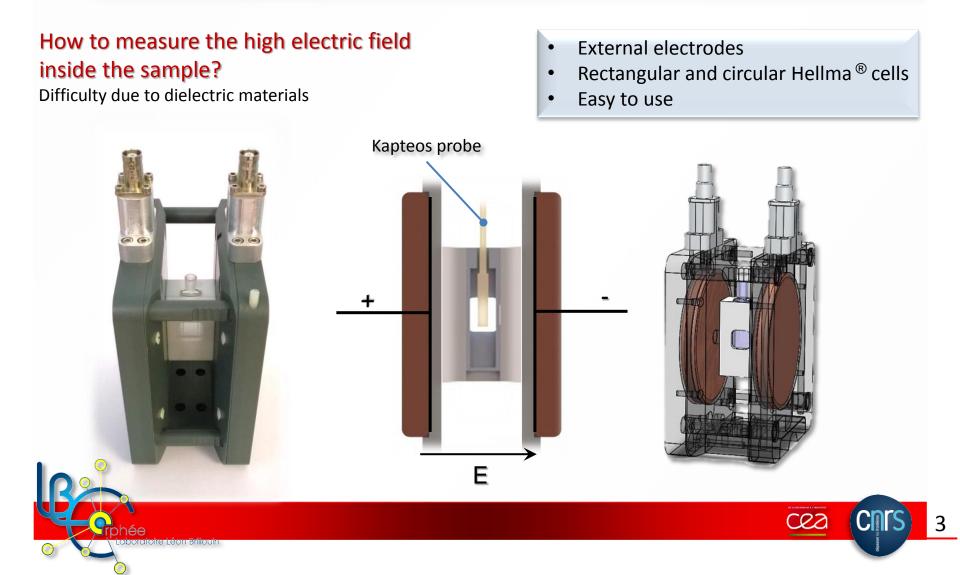
• Range of temperature:

From 10 to 60 °C

• Range of frequency:


From 0 to 60 kHz

Cea


1

Actual design

Actual design

Actual design

Measurements

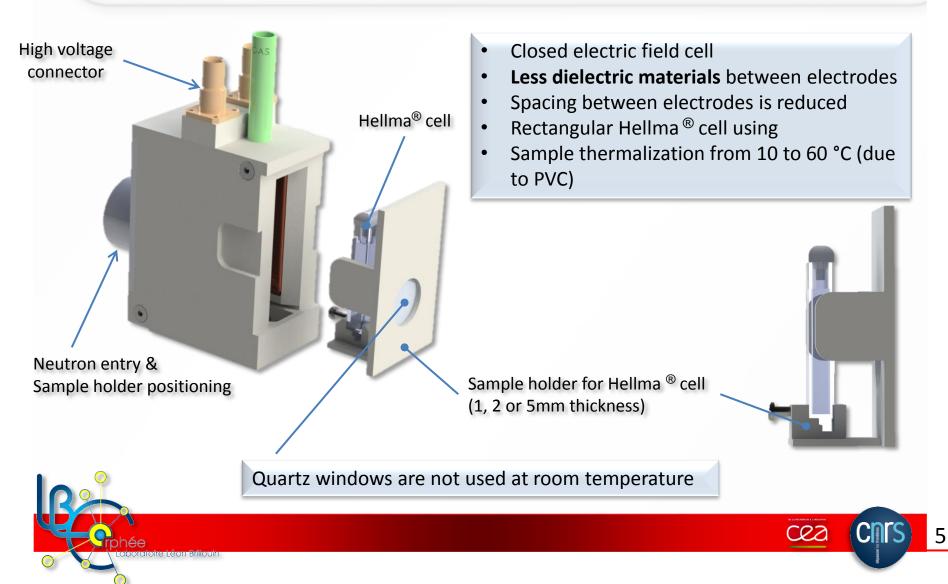
kapteps probe's to measure high electric field inside a fluid

Measurements performed in different solvents:

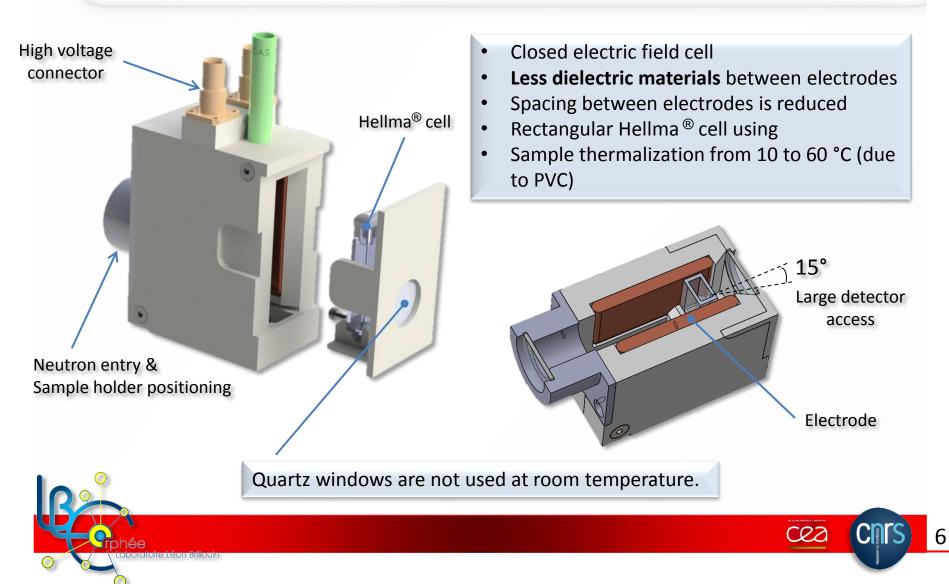
Fluid	Permittivity ε _r	Electric field (kV/cm)
Air	1.0	3.07E-1
Toluene	2.3	2.45E-1
Ethanol	24.3	2.36E-2
DMSO (Dimethyl sulfoxide)	46.7	5.32E-3
Distilled water	78.6	2.72E-3

Electric field in different fluids with an applied voltage of 2kV at 10kHz at 20°C

Due to a large amount of dielectric materials, the electric field is actually too weak.

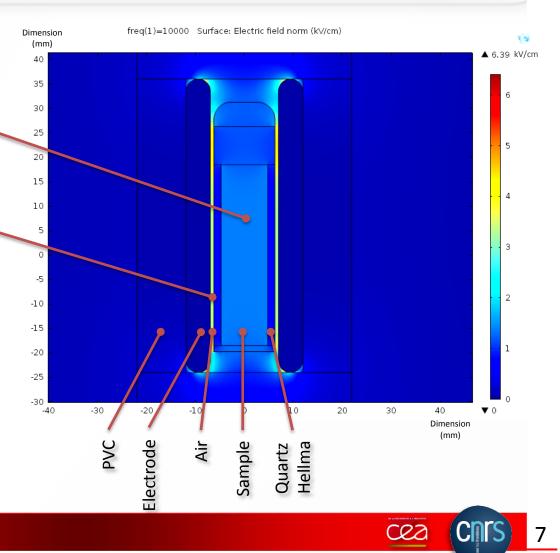


Kapteos probe inside an Hellma[®] cell

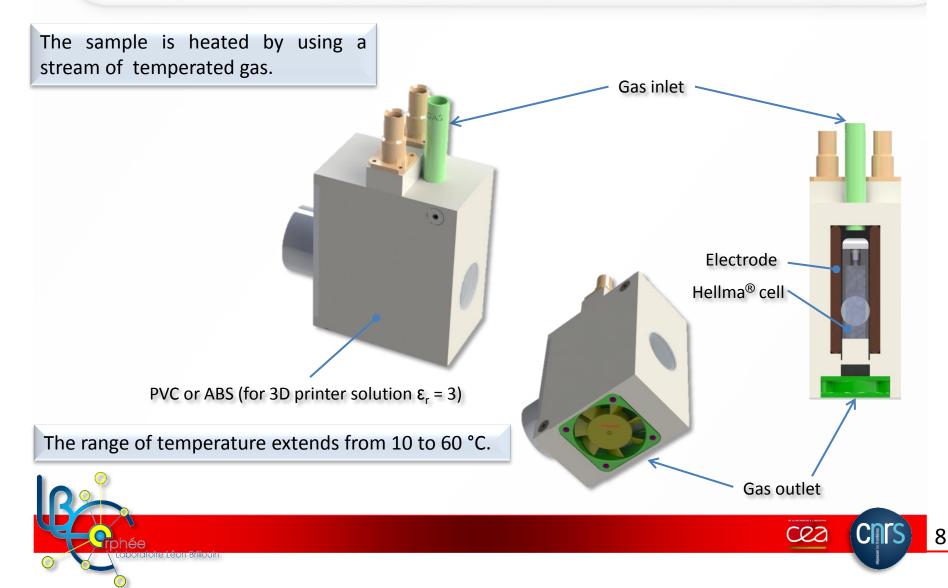


Toward a new design Closed and thermalized

Toward a new design Closed and thermalized

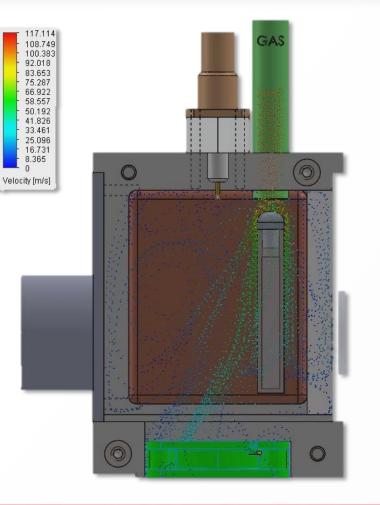

Toward a new design Simulation

Electric Field Simulation


• Sample thickness 9.6mm 1.4 kV/cm on the sample (toluene $\varepsilon_r = 2.3$) with 2kV applied

• The EF can be improved reducing the spacing between the electrodes and the Hellma[®] cell

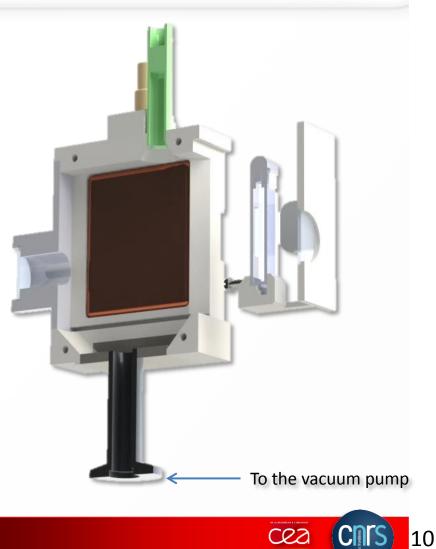
ire l'eon Brillo


Toward a new design Thermalization

Toward a new design Thermalization

Gasflow simulation

- Homogeneous flow on the sample
- Reduction of the front turbulences?


cea

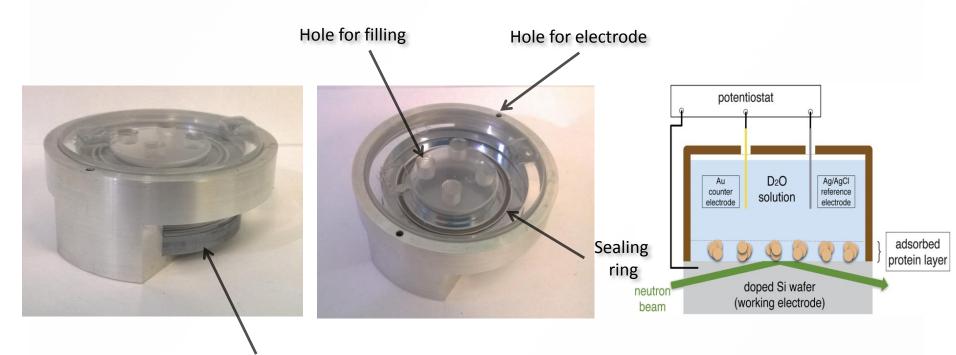
Toward a new design Thermalization

Gasflow regulation with a vacuum pump

Use of vacuum pump to define airflow. The opening of the valve will determine the gasflow.

> 96.428 4 3.36 4 0.306 9 32.24 2 22.44 2 4.183 1 61.22 1 20.92 1 20.

Thanks


Burkhard ANNIGHÖFER Patrice PERMINGEAT

Dirk WALLACHER Matt BARRETT Nico GRIMM

Electric field cell for neutron reflectometry

Task1: a platform for model biological membranes

Conductive Si wafer (electrode)

A. Koutsioubas et al., Soft Matter, 2012, 8, 2638-2643

Cea

Electric field cell for SANS

Thank you for your attention

