

NMI3 - Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy

NMI3 Meeting 26.-29.9.05 **JRA8 MUON-S** WP1: Fast Timing Detectors – High Magnetic Field µSR Spectrometer Project at PSI Status Report

R. Scheuermann & A. Stoykov

Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, Villigen, Switzerland

- PSI high-magnetic field project
- > AMPDs properties
- Scintillating fiber module
- Muon beam profile monitor (µBPM)
 measurements in high magnetic fields
- Commercially available fast timing detectors tested
- Thin scintillators

Maximum magnetic field (TF):

Field homogeneity / stability:

 $\Delta H/H \leq 10^{-5}$

 $H_{\rm max} \sim 10 {\rm T}$

(over sample volume 10×10×2 mm³ for typ. 4 hrs.)

compact, max. length:

 $I_{max} \leq 30 \text{ cm }$?

 \Rightarrow split coil (warm bore, $\varnothing \approx 100$ mm)

solenoid?

- μ^+ , E_{kin} = 4.2 MeV
- TF: 90° spin rotation

time resolution: $\delta t \le 300 \text{ ps}$ (FWHM)

compact detector system: AMPDs ? (Avalanche Microchannel Photodiodes)

Magnet design: length, field homogeneity & long-term stability

Stray field minimization (spin phase coherence)

Muon phase space / momentum bite

Muon beam collimation

Detector system (fast & compact)

Sample environment (incl. scintillators)

- 'cheap' (multi-segment detectors)
- ➤ 'compact'
- ➤ insensitive to magnetic fields
- ⇒ photodetector close to sample with best time resolution (High Magnetic Field Spectrometer)
- commercially available APDs: expensive, magnetic housing, OEM, ...
- new development necessary for 'dedicated' devices: Protocol PSI – JINR Dubna (24/11/2004): Joint Research in the field of "Development of scintillation detectors on the base of new microchannel avalanche photodiodes" (Z. Sadygov)

PAUL SCHERRER INSTITUT

Geiger mode (saturation, $U>U_{breakdown}$): reduction of excess noise factor at high gain

PAUL SCHERRER INSTITUT Examples of some state-of-the-art APDs:

a) RMD S1315 (13 x 13 mm²); b) Hamamatsu S8148 (5 x 5 mm²); c) Dubna R8 AMPDs (2.75 x 2.75 mm² and 0.75 x 0.75 mm²).

AMPD type Dubna R8

(Z. Sadygov, JINR Dubna)

An AMPD with deep micro-wells. Version # 3.

0.75mm * 0.75mm

2.8mm * 2.8mm

This version of AMPDs demonstrates the unique parameters:

- Geometrical transparency/active area ------ 100%;
- Quantum efficiency ------ 80%;
- Max. gain (today)----- 20 000
- Equivalent density of pixels ------ 10 000 per mm sq.
- Excess noise factor

Publication: A patent application # 2005108324 dated 24.03.2005

courtesy of Yu. Musienko (CERN)

Туре	Dubna R8	Dubna ZS-2
	Al contact $\downarrow \downarrow \downarrow$ p^*-Si $p^-Si epi. layer of d ~ 3-5\mu$ Avalanche region in-Si wafer Deep micro-well for charge collection Density~10 ⁴ mm ⁻²	Indv. drift <u>channel</u> SiO ₂ <u>VV</u> Si wafer
Photosensitive area	$0.75 imes 0.75 \text{ mm}^2$	$1 \times 1 \text{ mm}^2$
Density of microchannels	pprox 10 ⁴ mm ⁻²	$\approx 10^3 \text{ mm}^{-2}$
Photon detection efficiency	\approx 15% at 440 nm	\approx 3-5% at 380 nm
Maximum gain (<i>M</i> _{max})	$pprox 3{ imes}10^4$	$pprox 2 imes 10^{6}$
Dark current at <i>M</i> _{max}	< 200 nA	≈ 1000 nA
Operating voltage	\approx 100 V	pprox 70 V

Readout from thin scintillators

(200 µm; M-counter: start signal)

EJ-230 specs: $\tau_{rise} = 0.5$ ns, $\tau_{fall} = 1.5$ ns

APD Hamamatsu S8148 on NE102A scintillator as positron detector:

NMI3/JRA8, SR35, 26.-29.09.2005

Scintillating Fiber Detector Module

PAUL SCHERRER INSTITUT

Scintillating Fiber Detector Module

1-electron (dark) signals

Signals from 29 MeV/c muons in 1×1 mm² BCF-10 fiber

Scintillating Fiber Detector Module

Amplitude distributions

1-electron signals / muon signals in magnetic fields of zero and 4.8 T.

The decrease (~10 %) of the signal amplitude at H = 4.8 T is due to the change of the *amplifier* performance in the magnetic field (confirmed by measurements using a pulser signal to feed the amplifier input)

Muon pulse **amplitude** *A* as a function of **muon rate** *n* (A_0 = amplitude at dark count rate $n = 5 \cdot 10^3 \text{ s}^{-1}$)

Dashed line: prediction of A(n) at higher rates, calculated based on eqs. (1) and (2).

Dependence of the AMPD gain *M* on the rate per pixel of 1e-pulses. Dashed line:

$$M/M_0 = 1 - q \ln (n_1 / n_{1,0}),$$
 (2)

with $n_{1,0} = 2.7 \cdot 10^3 \text{ s}^{-1}$, q = 0.092.

Detector Development

Muon beam profile monitor: A. Stoykov *et al.* [NIM A 550 (2005) 212]

Muon beam profile measurement in center of ALC solenoid:

AMPDs and preamps work fine in 5 T!

Beam Profile Measurements

Variation of muon spot size on sample

PAUL SCHERRER INSTITUT

~ 7

y bins

-1 -2 -3 -4 -5 -6

2

 \Rightarrow different trajectories of decay e⁺ in high magnetic fields (spiraling), this affects the F-B asymmetry!

 \Rightarrow Simulations (T. Lancaster, WP2)

PAUL SCHERRER INSTITUT Fast-Timing Detector Development

Hybrid Avalanche Photodetector Hamamatsu R7110U-07:

combination PMT+APD

electrostatic focussing lost above 1 kG // axis: decrease of signal amplitude

excellent timing properties (rise time): no change !

PHOTON PHOTO-ELECTRONS Electro ombardm ultiplicatio

NMI3/JRA8, SR35, 26.-29.09.2005

Compact HPD Operating Principle PHOTOCATHODE

Fast-Timing Detector Development

Multianode-MCP PMTs

BURLE PLANACON[™] 85001-501

4 channels

good timing properties, but severe cross-talk, bulky, not user-friendly quantum efficiency \times collection efficiency \approx 10% (PMT XP2020: 28%)... insufficient gain: only 5×10⁵

Fast-Timing Detector Development

Multipixel HPD Hamamatsu R9503U-04-M064

8x8 pixels, 16x16 mm² eff. area - (25 kSFr...)

Tests planned 12/2005

Study the light collection from thin plastic scintillators

Motivation

One of the most important issues in fast timing experiments is efficient collection of light from the scintillator to the photosensor (significant light losses might occur in the scintillator itself and in the light guides).

Muon counters of μ SR spectrometers are based on ~200 μ m thick plastic scintillators. The number of reflections each photon undergo in a thin scintillator is very large and the quality of the scintillator strongly effects the light collection.

<u>Goal</u>

Find out the upper limit for the light collection from a thin 10 x 10 x 0.2 mm³ scintillator via one of 10 x 0.2 mm² faces.

Monte-Carlo simulations

based on the code: V.A.Baranov et.al., NIM A 374 (1996) 335

Time histogram for the photons collected from a 10 x 10 x 0.2 mm³ plastic scintillator via one of the 10 x 0.2 mm² faces (absorbs all incident photons). About 45% of photons are collected within 0.2 ns.

- C1: test scintillator 10 x 10 x d mm³, d ~ 0.2 mm;
- C2: BCF-10 scint. fiber $(1 \times 1 \text{ mm}^2)$;

Cu-filter: cuts off electrons with energies < 0.7 MeV.

Amplitude (pC)

Amplitude distributions for one-photoelectron PMT signals (1phe) and signals from relativistic electrons (mip) passing through scintillator C1 (sample no.10: 230 µm BC-400).

- A_{1phe} -- the mean amplitude of 1phe-signals, measured by shining weak continuous light onto C1 ($n \sim 10^5 \, \text{s}^{-1} >> n_{\text{dark}}$);
- A_{mip} -- the most probable amplitude from relativistic electrons emitted by ⁹⁰Sr.

NMI3/JRA8, SR35, 26.-29.09.2005

Scintillators studied

Cointillator	LE,	OE,	N_{phe,max}
Scintillator	ph/MeV	%	(200 µm)
EJ-204 / BC-404	10400	26	108
EJ-230	9700	28	108
EJ-232	8400	27	90
EJ-212 / BC-400	10000	25	100
EJ-232Q / BC- 422Q (0.5%)	2900	27	31

$$N_{\text{phe}} = A_{\text{mip}} / A_{1\text{phe}} \times 200 / d$$
 – measured number of photoelectrons per mip scaled to 200 µm

$$CE = N_{phe} / N_{phe,max}$$
 – efficiency for the light collection

 $N_{\text{phe,max}} = (dE/dx)_{\text{mip}} \times \rho \times 200 \ \mu\text{m} \times LE \times QE$

$$(dE/dx)_{mip} = 2 \text{ MeV} \times (\text{cm}^2/\text{g}), \quad \rho = 1 \text{ g} / \text{cm}^3,$$

- *LE:* light yield of the scintillator
- *QE:* quantum efficiency of the PMT averaged over the emission spectrum of the scintillator

The quality of the samples was estimated visually with marks from 1 (poor) to 5 (excellent)

-- the table gives the group characteristic quality estimates.

* The samples were obtained from Eljen cut to the specified dimensions. No microcracks are seen in the scintillator bulk but the larger faces look wavy. Smaller faces were not polished and look rugged.

** The samples were cut from scintillator sheets using a diamond saw. Microcracks appeared due to pressing the scintillator when cutting.

*** The samples were cut from scintillator sheets. The smaller faces were hand-polished. Microcracks appeared due to pressing the scintillator when polishing.

Sample		Sample quality				
Nn	Scint. type	d, µm	faces 10x10mm + bulk	faces 10xd mm	N _{phe}	<i>CE</i> , %
1	EJ-204	190	4.5*		15.2	14.1
2	EJ-230	200		1	12.3	11.4
3	EJ-232	160			12.5	13.9
4	EJ-232Q	180			4.4	14.2
5	BC-400	230	3**	2.5	12.3	12.3
6	BC-422	210			3.7	4.1
7	BC-422Q	250			3.2	10.3
8	BC-422	210	3.5***	4.5	9.3	10.3
9	BC-422Q	250			4.0	12.9
10	BC-400	230			18.9	18.9
11	EJ-212	300			18.9	18.9

<u>Summary</u>

- 1) Very high values (up to 20%) for the light collection efficiency (*CE*) were obtained with thin 10 x 10 x *d* mm³ (*d* ~ 0.2 mm) plastic scintillators. The maximum possible efficiency of 45% predicted in Monte-Carlo simulations is proven to be realistic.
- 2) The **quality of a scintillator** has a strong effect on the light collection. Fine polishing of the smaller $10 \times 0.2 \text{ mm}^2$ faces is important (simulations show that full absorption on the three $10 \times 0.2 \text{ mm}^2$ faces leads to a decrease by a factor of 4 in *CE*).
- 3) With CE > 20% the development of a prototype of a magnetic field insensitive detector based on a fast plastic scintillator and today available AMPDs (area 1 x 1 mm², *PDE* = 3 - 5% at 380 nm) becomes feasible.

Towards fast timing in high magnetic fields: a concept of an AMPD based scintillation detector

Expected performance (with ZS-2mp) $LC \sim 20\%$ (200 µm), 20 – 40% (1 mm) $K_g = 0.5$ (geometry factor) PDE (ZS-2mp) = 3 – 5% for EJ-230

EJ-230 (200 μm): **12 phe** / μ⁺ (29 MeV/c) EJ-230 (1mm): **6 – 12 phe** / e⁺ (mip)

Sufficient for feasibility tests !!!

Fast-timing detectors available on the market: tested (& rejected...) ► fast-timing spectrometer requires special development: AMPDs

Collaboration PSI-JINR (Z. Sadygov, V. Zhuk): AMPD development / light guides & fibers

Full spectrometer simulation (detector arrangements, secondary beam, ...): WP2

PSI electronics development (?):

fast preamps (matching AMPD impedance, \neq 50 Ω) with on-board discriminators