
your logo
here

WP6-1st meeting

04/07/12 © 2004 NMI3 1

Standards for data analysis software
NMI3-II WP6

ILL, ISIS, PSI, FRM2, JCNS GKSS HZB ESS

your logo
here

WP6-1st meeting

Science path

The legacy path

A reminder about terminology [Ref: DANSE]

your logo
here

WP6-1st meeting

04/07/12 © 2004 NMI3 3

For the first time, we have resources from EU to gather our
knowledge and strength.

Our tasks:
Task .1: Review existing data analysis software and practices of software developers
Task .2: Review existing solutions for a common data analysis infrastructure
Task .3: Develop prototype software in chosen solution for representative applications
Task .4: Evaluate prototype software

Our resources:
4 months of each of the other participants (that is about 2-3 days per
month for each of us).

30 months position funding.
Our smiles.

Our tasks and resources

your logo
here

WP6-1st meeting

Any 'new' project should start by an evaluation from past attempts:
LAMP
Gumtree
DANSE (PDFgui, SANSView,
Horace/Mslice, Fullprof, SANSView/SASFit, PDFgui, GenX, McStas, ResTrax,

 Vitess, vTas, Isaw, Frida, …
Mantid
DAVE
ROOT (CERN)
… (and too many others)

Memories from the Past

Success and failure

What is “good, bad and ugly” in these ?
Do we need to re-invent the wheel ?
How to optimize our investment ?
Any initiative should start by a review.

your logo
here

WP6-1st meeting

Dead software: warning
There is only 'old' software around when a new one starts.

Missing collaboration brings single-point of failure.
The development team must be of at least 2 people on every project.

User community is a good collaboration scheme. It also minimises
maintenance, ensures long life-time and gives credit.

Most dead software are limited in size (less than 10 kLOC) and are
relatively easy to refactor or include.

Many dead software are not available any more. Some do not
compile or install (VMS).

your logo
here

WP6-1st meeting

In order to decide on what to do, we should
analyse what makes a 'good' code, so we know

what not to do.

your logo
here

WP6-1st meeting

Code granularity

Granularity: Coarse-grained components are easier to
use, but fine-grained components are more reusable.
Coarse-grained components (e.g. integrated apps.) are
easier to use and have more features, but fine-grained
components (many objects) are more reusable and simple.
In practice, very few 'low-level' objects are re-used. Third
party libraries are fine-grained, and introduce
dependencies.

Weight: Lightweight components are more reusable,
but heavyweight components are easier to use.
lightweight components require to be configured/adapted
to their environment. Heavyweight components usually
contains their own configuration settings.

Maximizing reuse complicates use
[Ref: Clemens Szyperski]

your logo
here

WP6-1st meeting

Code complexity, Lines of Code
Code complexity

A project with many languages is harder to maintain.
A greater number of components means that there are more places where the
system can fail.

Lines of Code
A programmer writes about 12 working LOC/day, but this efficiency is twice
higher for small projects (100 kLOC).
Total LOC in a project is a good indicator of software complexity.
Higher level languages need less LOC per feature, and are easier to convert to
lower level than vice-versa.
A greater number of LOC has correlation with the number of bugs the software
has.
A single programmer can maintain 50-100 kLOC.
100 kLOC cost about 1M$ total.
A good programmer is 20-25 times more efficient than a bad one.

your logo
here

WP6-1st meeting

Criteria for a 'good' project
We have limited resources, so we can estimate what is within
reach.

Software must use high level language, and not too many different.
Software must remain available and installable.
Software must minimize the number of classes.
Software must minimize its dependencies (libs and external
classes).
Software must minimize complexity: think 'simple' first.
Concentrate on science, ignore interfaces as far as possible (too
much work).
Unit testing is essential to provide quality software.
One person for 30 months → 10-50 kLOC code maximum.

your logo
here

WP6-1st meeting

Suggested actions: Task 1
Review existing data analysis software and practices of software developers

Inquire about software usage (downloads/day and nb of users,
unique features) to estimate if old codes must be maintained.

Test/analyse software:
Ricardo will make a presentation about that.
Jon will present Mantid
Use e.g. the NMI3 LiveDVD to make-up your mind.

Objective: Build a table of 'recommended' software

Any other suggestion is welcome.

your logo
here

WP6-1st meeting

Suggested actions: Task 2
Review existing solutions for a common data analysis infrastructure

Common infrastructure could be:
Documentation about the common practises to follow (define standards).
Common interface layout (only guidelines as we won't code that yet).
Common data format: NeXus seems unavoidable.
Common workflow standards for function calls
List of common low level functions that should be shared by all.
Common web site to hold information, documents and code.

See http://software.pan-data.eu
Centralized development area (a 'forge') for the code, trac/tickets and documents.

Could be http://software.nmi3.eu directing to e.g. GitHub or other SVN-repos.
Common naming/terminology, e.g. out=call(in, …). We could envisage to have
aliases.
Start to define a common ontology to describe data processing, in the style of e.g.
http://geneontology.org.

http://software.pan-data.eu/
http://software.nmi3.eu/
http://geneontology.org/

your logo
here

WP6-1st meeting

Suggested actions: Task 3
Develop prototype software in chosen solution for representative applications

Identify representative application(s)
Should be reactor source oriented (as we mainly use reactors around this table, and Mantid
does the job for spallation sources).
Must correspond to a need (something new if possible)..
Proposed applications (reactor): only data reduction

Multiplexed TAS (RITA/Flat-Cone style).
Powder or SX diffractometer.
… ?

Whatever be the choice, should make use as much as possible of
 existing codes (Mantid/VATES, NeXus stuff, vTAS, LAMP, …).

Possible Technical solutions:
Convert files into Mantid/NeXus format, compute S(q,w) from vTAS (java) and use VATES.
Write a full set of Loader/Algorithm for Mantid (C++).
Use IDL (LAMP, DAVE) or Matlab (mFit, iFit) to design an application.
Write an independent application.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

