

In-situ light scattering as a tool for sample control during Small Angle Neutron Scattering

Tobias E. Schrader

Jülich Centre for Neutron Science, Garching, Germany.

Deliverables

D20.3	reconstitution of membrane proteins	20	2	1.00	R	PU	48
D20.4	Characterization of biomembranes	20	1	1.00	R	PU	48
D20.5	Designs of new stop flow observation heads for SANS	20	1	1.00	R	PU	18
D20.6	Conception and design of MA-LS setup	20	4	1.00	R	PU	18
D20.7	Design an electric field cell for SANS	20	7	1.00	R	PU	18
D20.8	Conception and design of a pressure cell for NSE	20	4	1.00	R	PU	36
D20.9	Tests of MA-LS prototype setup	20	4	1.00	R	PU	24
ר20 10	Tests of new stop flow	20	1	1 00	R	PH	.30

(0,0)(0,0

0.1

0.2

Komplex of a PGK enzyme

Measurement of a PGK enzyme with Small Angle Neutron Scattering for different concentrations

Inoue, ; Biehl, R. ; Rosenkranz, T. ; Fitter, J. ; Monkenbusch, M. ;Radulescu, A. ;Farago, ; Richter, D.:Large Domain Fluctuations on 50-ns Timescale Enable Catalytic Activity in Phosphoglycerate Kinase, In: Biophysical Journal 99 (2010),

 control of the sample quality in a short time (possible degradation behavior)
 measurement of larger length scales possible (aggregates)

- -> save neutron time
- non-destructible method, delivering additional information on the sample

Dynamic Light Scattering (DLS)

- Measurement of particle size at one freely chosen angle
 - > magn. of the scattering vector: $q = \frac{4\pi n}{\lambda_0} \sin \frac{\theta}{2}$
 - > (Intensity-)autocorrelation-function: $g^{I}(\tau) = (1 + \alpha * e^{-2q^{2}\tau * Dt})$
 - > measure of the diffusion constant: $D_t = \frac{k_B * T}{6\pi * \eta * rH}$
 - hydrodynamic radius r_H 20 nm to some μm

➤ (intensity-)autocorrelation-function: $g^{I}(\tau) = (1 + \alpha * e^{-2q^{2}\tau * Dt})$

- Measurement of many scattering angles (Goniometer)
- angular intensity-distribution
 - > Formfactor: $F(q) = \frac{3}{(qR)^3} [\sin(qR) (qR)\cos(qR)]$
 - > magn. of the scat. vector: $q = \frac{4\pi n}{\lambda_0} \sin \frac{\theta}{2}$
 - determination of the radius

observable particle sizes

$$q=\frac{4\pi n}{\lambda_{\rm o}}\sin\frac{\theta}{2}$$

 $4,5 * 10^{-4} \text{ Å}^{-1} \le q \le 2,5 * 10^{-3} \text{ Å}^{-1}$

Small Angle Neutron Scattering

$$2 * 10^{-3} \text{\AA}^{-1} \le q \le 0,2 \text{\AA}^{-1}$$

$$l = \frac{2\pi}{q}$$

250 nm $\leq l \leq$ 1,4 μ m

 $3 \text{ nm} \leq l \leq 300 \text{ nm}$

Previous experiments using In-situ light scattering found in publications

A high pressure cell for small angle neutron scattering up to 500 MPa in combination with light scattering to investigate liquid samples

Rev. Sci. Instrum. 78, 125101 2007

J. Kohlbrecher, A. Bollhalder, and R. Vavrina Laboratory for Neutron Scattering, ETH Zurich and Paul Scherrer Institut, 5232 Villigen PSI, Switzerland IFF, weiche Materie, FZ-Jülich, Postfach 1913, 52428 Jülich, Germany

FIG. 5. Schematic sketch of the setup which allows simultaneous SANS and DLS measurements.

New sample environment opportunities on D11 P. Lindner & R Schweins

ILL news - number 51 – december 2009

Mol.Pharmaceutics 2011, 8, 2162-2172

Figure 1: DLS-SANS set-up at D11 (courtesy of Th. Nawroth, U Mainz). The red arrow marks the incident laser light direction, the blue arrow the incident neutron beam direction and the green arrow highlights the stopped-flow mixing device.

The two possible configurations goniometer / fibre - configuration

advantage: possible to use sample changer

Goniometer Configuration

advantage: many scattering angles accessible

Goniometer Configuration

Lab measurements

test of the set up

SLS data with theoretical plot on a cylindrical cuevette - not suitable for neutron scattering

DLS data

combined SANS and light scattering measurements at KWS-2

Goniometer set up

goniometer configuration at KWS2

goniometer configuration at KWS2

SLS data at KWS2 – goniometer configuration with rectangular cuvette - suitable for neutron scattering

limitet q-range (rectangular cuvette)

Dynamic Light Scattering (goniometer configuration)

SANS data at KWS2 – goniometer configuration

SANS data at KWS2 – goniometer configuration

fibre - configuration

Fibre configuration

advantage: possible to use sample changer

fibre configuration at KWS2

fibre configuration at KWS2

advantage: possible to use sample changer

fibre configuration at KWS2

fibre configuration at KWS2

sample: mixture of 15 nm particles (0,36 wt%) with an artificial pollution of 799 nm particles (0,11 wt%)

SANS data at KWS2 – fibre configuration

Summary

✓ Dynamic Light Scattering: applicable results with goniometer-/fibre-configuration

Summary

- ✓ Dynamic Light Scattering: applicable results with goniometer-/fibre-configuration
- <u>Static Light Scattering</u>: significant error
 Toluene bath; use custom made cuvette

- ✓ Dynamic Light Scattering: applicable results with goniometer-/fibre-configuration
- <u>Static Light Scattering</u>: significant error
 Toluene bath; use custom made cuvette

✓ In-situ measurements:

- ✓ additional information
- ✓ data correction
- ✓ additional scientific applications possible

Thanks to:

Raimund Heigl Aurel Radulescu Simon Starringer Noemi Szekely Thomas Glomann Jörg Stellbrink

Thank you for your attention !

Current set up

